

Hamburg Port Authority Bereich Strombau Prozess Wassertiefen

Harris and Barris and Arriva Harris and Harris and Harris and
Umgang mit Baggergut aus dem Hamburger Hafen
Teilbericht Umlagerung von Baggergut nach Neßsand
Bericht über den Zeitraum 1.1. bis 31.12.2005
Mai 2006

Überblick

Veranlassung

Gemäß dem Handlungskonzept "Umlagerung von Baggergut aus dem Hamburger Hafen in der Stromelbe" wird hiermit der Bericht für das Kalenderjahr 2005 mit Angaben über die im Hamburger Hafen im Rahmen von Unterhaltungs- und Investitionsmaßnahmen angefallenen und umgelagerten Baggergutmengen vorgelegt.

Mengen

Bei Unterhaltungsmaßnahmen fielen insgesamt 9,3 Mio. m³ Baggergut an. Den Landbehandlungsanlagen in Francop und Moorburg wurde 1 Mio. m³ schlickiges Material zugeführt. Weitere rd. 0,9 Mio. m³ Sand aus der Stromelbe wurden in Francop und Moorburg für Bauzwecke verspült. 0,1 Mio. m³ mit Mineralöl verunreinigte Böden wurden als besonders überwachungsbedürftiger Abfall behandelt und in den Baggergutdeponien entsorgt. Ingesamt wurden rund 7 Mio. m³ durch Verklappen sowie mit dem hydraulischen Injektionsverfahren umgelagert.

Umlagerung bei Neßsand

Bei Neßsand wurden rund 6,2 Mio. m³ umgelagert. Im Februar fiel eine maximale Wochenmenge von 0,6 Mio. m³ an. Diese hohen Mengen, die sich vermutlich zu einem nicht unbeträchtlichen Teil aus Kreislaufbaggerungen ergeben, sowie die zeitlichen Begrenzungen im Sommer waren mit Anlass für die Umlagerung in einen nicht Flutstrom dominierten Bereich.

Begrenzungen der umlagerfähigen Sedimentmengen ergeben sich aus der Schadstoffbelastung des Sediments sowie aus zeitlichen Einschränkungen zum Schutz empfindlicher Gewässerorganismen und der Gewässergüte ("Zeitfenster"). Die Begrenzungen der Schadstoffgehalte wurden eingehalten.

Peilungen an der Einbringstelle bei Neßsand belegen, dass in der Gesamtbilanz im Betrachtungszeitraum nur eine sehr geringe Menge im Einbringbereich verblieben ist.

Umlagerung in die Nordsee

Aufgrund des hohen Sedimentanfalls bereits im Sommer wurde erstmalig im Jahr 2005 Baggergut außerhalb der Landesgrenzen umgelagert. Auf der Grundlage einer Einvernehmenserklärung des Landes Schleswig-Holstein sowie einer Vereinbarung mit der Wasser- und Schifffahrtsverwaltung des Bundes wurden rd. 0,8 Mio. m³ in die Nordsee in die Nähe der Tonne E3 umgelagert; hierüber liegt ein separater Monitoringbericht vor.

Frachten

Die Landverbringung von Baggergut im Rahmen der Wassertiefenerhaltung im Hamburger Hafen hatte auch im Jahr 2005 eine deutliche Schadstoffentlastung von Elbe und Nordsee zur Folge: im Mittel rund zwei Drittel der Metalle in Bezug auf die Elbefrachten in Schnackenburg.

Die in 2005 an Land entsorgte TBT-Fracht betrug 146 kg TBT-Sn bzw. 356 kg TBT.

Ausblick

Die Mengen des Jahres 2005 lagen auf dem Niveau des Vorjahres. Verschiedene Faktoren, dazu gehören die höhere Oberwasserführung der Elbe im Sommer sowie die dauerhafte Entfernung von Sedimenten mit der Umlagerung in die Nordsee, haben dazu beigetragen, dass die Mengen in der zweiten Jahrenshälfte deutlich geringer waren (2/3 der Gesamtmenge fielen in der ersten Jahreshälfte an).

HPA befindet sich in intensiven Gesprächen mit der Bundeswasserstraßenverwaltung und den Umweltressorts der Länder zur Entwicklung eines langfristigen Sedimentmanagementkonzepts mit den Zielen:

- Sicherung ausreichender Wassertiefen im Hamburger Hafen und seiner seeseitigen Zufahrt unter ökonomisch konkurrenzfähigen und ökologisch nachhaltigen Randbedingungen
- Reduzierung des Stromauftransports von Sedimenten u.a. durch geeignete Maßnahmen zur Dämpfung des Tidenhubs und Stabilisierung des Tideniedrigwassers
- Verbesserung der Sedimentqualität, d.h. Sanierung der Schadstoffquellen im gesamten Elbegebiet

1. Randbedingungen

1.1. Abflussgeschehen

Die Abflussmenge der Elbe lag mit 673 m³/sec im Jahresmittel etwas unterhalb des langjährigen Mittels von 709 m³/sec, aber deutlich über dem Vorjahresabfluss von 513 m³/sec. Es traten 2 kurzfristige Abflussspitzen im Frühjahr auf.

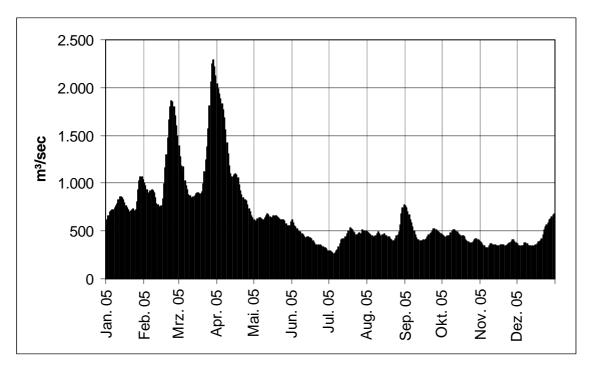


Abbildung 1: Abfluss am Pegel Neu-Darchau 2005

1.2. Gewässergüte

An den der Baggergut-Einbringstelle nächstgelegenen Messstellen Blankenese und Seemannshöft erfolgen kontinuierliche Messungen u.a. der Parameter Wassertemperatur und Sauerstoffgehalt. In Abbildung 2 sind die entsprechenden Tagesmittelwerte der Messstelle Seemannshöft dargestellt.

Im Zeitraum vom 13.4. bis 16.11. betrug die Wassertemperatur mehr als 10 °C.

Die Sauerstoffgehalte lagen in der Zeit vom 30.5. bis 4.10. mit Unterbrechungen unterhalb von 6 mg O_2 /I (an 95 von 128 Tagen). An 42 Tagen lag der Sauerstoffgehalt unterhalb von 4 mg O_2 /I, an 19 Tagen unterhalb von 3 mg O_2 /I. Der geringste Tagesmittelwert betrug 1,3 mg O_2 /I,

Der Zeitraum mit Wassertemperaturen über 10 °C war damit etwa so lang wie im Vorjahr, allerdings wiederum deutlich länger als in 2003, die Sauerstoffsituation war insgesamt besser als im Vorjahr und deutlich besser als in 2003.

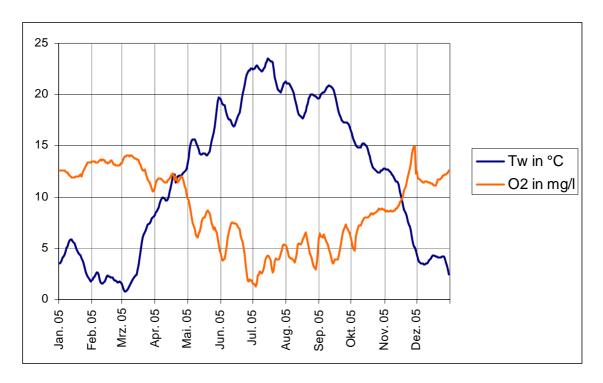


Abbildung 2: Wassertemperatur und Sauerstoffgehalte als Tagesmittelwerte in 2005 an der Dauermessstelle Seemannshöft

2. Baggermengen

In der Anlage 1 befindet sich ein Hafenplan mit den Namen der Hafenbecken.

Die Ermittlung der gebaggerten Mengen erfolgt auf der Grundlage der je Transportvorgang dokumentierten Angaben (Datum, Herkunft, Verbleib, Ladungsgewicht, Gerätevolumen). Die Angaben in m³_{Profilmass} sind das Ergebnis einer empirisch entwickelten Näherungsberechnung für Schuten aus der Angabe der Gesamtmasse. Diese Berechung bedarf einer Überprüfung hinsichtlich der Hopperbagger, da sie methodisch zu überhöhten Profilmengen führt.

Beim hydraulischen Injektionsverfahren erfolgt die Mengenermittlung näherungsweise über die Einsatzzeiten und die mittlere Geräteleistung.

Alle Angaben erfolgen in m³ und entsprechen dem Profilmaß an der Gewässersohle

2.1. Baggermengen nach Herkunft und Verbleib

Tabelle 1 gibt einen Überblick der Baggermengen 2005 nach Verbleib. Anlage 2 enthält einen Überblick der gebaggerten Mengen unterteilt nach Herkunft und Verbleib.

Im Jahr 2005 wurden im Bereich des Hafens und der Elbe rd. 9,3 Mio. m³ Baggergut bewegt. Diese Menge ist wiederum sehr groß; der Trend der steigenden Mengen ist seit dem Jahr 1999 zu beobachten.

Das Gewässerbett der Elbe unterhalb Hamburgs unterliegt seit längerer Zeit einem fortwährenden hydromorphologischen Wandel, dessen Ursachen neben natürlichen Prozessen auch auf anthropogene Eingriffe des Verkehrswasserbaus und des Küstenschutzes zurückzuführen sind. Das Hydrosystem der Tideelbe hat darauf mit einer Formänderung der Tidekurve und Erhöhung der Geschwindigkeit der Tidewelle reagiert. Neben der natürlichen Aufweitung des Mündungsquerschnittes kommt es zu einer zunehmenden Konzentration der Tideströmung auf die Hauptrinne und eine zunehmende Verlandung von Seitenbereichen. Ein resultierender stromaufgerichteter Schwebstoff- und Sedimenttransport findet zunehmend günstigere Bedingungen. Die Beseitigung verschiedener Unterhaltungsschwerpunkte durch strombauliche Maßnahmen hat diesen Trend offenbar verstärkt.

Tabelle 1: Baggermengen 2005 nach Verbleib (m³)

Verbleib	Summe
Umlagerung	
 Sediment zur Umlagerung bei Neßsand 	6.161.100
 Sediment zur Umlagerung in die Nordsee bei Tonne E3 	816.000
 Sediment zur Umlagerung mit dem Wasserinjektionsverfahren 	46.000
Landbehandlung	
 Mischboden zur Behandlung und Verwertung / Deponierung 	995.700
 Sand für Baumaßnahmen der Baggergutbehandlung und -unterbringur 	ng 930.500
 Mineralöl-verunreinigte Böden zur Entsorgung 	102.200
Gewässerunterhaltung und Herrichtung von Flächen	
 Sand für Aufhöhungen 	67.600
 Boden zu Verklappung bei Strombaumaßnahmen 	219.100
Summe	9.338.200 m ³

Im Jahr 2005 wurden rund 7,4 Mio. m³ Baggergut umgelagert. Zur Klappstelle Neßsand im Bereich des Strom-km 638 vor der Landesgrenze am südlichen Fahrwasserrand im Bereich des Tonnenstrichs wurden rund 6,2 Mio. m³ und damit weniger als in Vorjahr verbracht.

Die Umlagerungen bei Neßsand finden ausschließlich bei ablaufendem Wasser (Ebbstrom) statt. Dennoch weisen Beobachtungen daraufhin, dass die umgelagerten Sedimente nur sehr begrenzt Richtung Nordsee abtransportiert werden. Der mutmaßlich weitaus größere Teil der umgelagerten Sedimente kehrt stromauf in den Hamburger Hafenbereich zurück. Abschätzungen ergeben einen Kreislauffaktor von 3. So kommt es zu ständig steigenden Mengen. Auch ökologisch ist dies von Nachteil.

Im Jahr 2005 wurde erstmals Baggergut in die Nordsee zur Tonne E3 umgelagert. Diese Mengen kommen nur aus der an Hamburg delegierten Bundeswasserstraße Elbe, es sind in jedem Fall frische Sedimente, die maximal ein Jahr an der Baggerstelle gelegen haben. Hierüber liegt ein separater Monitoringbericht vor. Die Menge betrug gut 800.000 m³.

2.2. Massen

Die Ermittlung der Massen ist u.a. für die Berechnung der Schadstofffrachten (Kapitel 5) erforderlich. Für die einzelnen Baggergebiete werden aus der Baggermengen-Anschreibung der Unterhaltungsmaßnahmen die entnommenen Feststoffmassen Sand und Schlick rechnerisch ermittelt.

Tabelle 2: Gebaggerte Massen in 2005

Verbleib	Sand t TS	Schlick t TS
Umlagerung nach Neßsand	964.300	1.483.200
Umlagerung zur Tonne E3	147.500	181.000
Baggergut zur Behandlung Francop und Moorburg	221.300	307.000
Sand für Baumaßnahmen der Baggergutbehandlung und - unterbringung	1.326.000	53.300
Sand für Aufhöhungen	95.700	4.100
Boden für Strombaumaßnahmen	336.800	5.000
Mineralöl-verunreinigte Böden zur Entsorgung	92.000	21.400
Gesamt	3.183.600	2.055.000

2.3. Zeitliche Verteilung

Die Umlagerungen in Hamburg erfolgen auf der Grundlage des Handlungskonzepts "Umlagerung von Baggergut aus dem Hamburger Hafen in der Stromelbe" aus 2002, das zeitliche Einschränkungen vorsieht. Abbildung 3 zeigt die pro Woche umgelagerten Mengen. Aufgrund der Umlagerung in die Nordsee konnten Umlagerungen in der warmen Jahreszeit - wie im Vorjahr - vermieden werden. Andernfalls hätten Beschränkungen für die Containerschifffahrt ausgesprochen werden müssen.

Eine geringe Menge von knapp 50.000 m³ wurde wieder in verschiedenen Hafenbereichen mit dem Wasserinjektionsgerät bewegt. Während der Ausschlusszeit wurden mit dem Gerät lediglich kleinere, örtlich begrenzte notwendige Nivellierungsarbeiten vorgenommen.

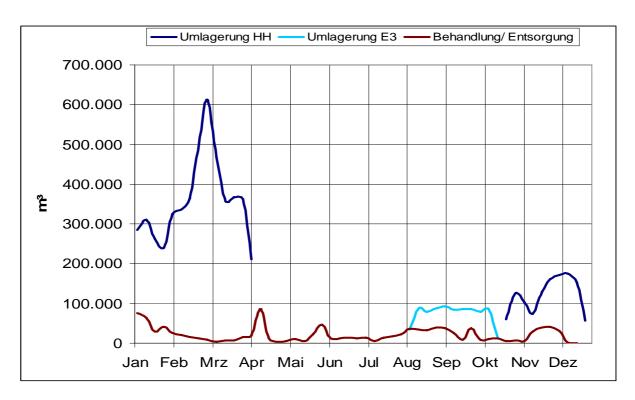


Abbildung 3: Wöchentliche Baggergutmengen "Umlagerung" innerhalb Hamburgs (Neßsand bzw. WID) sowie in die Nordsee (Tonne E3) und "Behandlung" in Francop bzw. Moorburg sowie Böden zur Entsorgung in 2005

3. Peilungen und Volumenvergleich

Im Zeitraum vom 10.12.04 bis zum 2.12.05 wurden sechs flächendeckende Peilungen im Einbringgebiet und Umgebung durchgeführt. Das eingesetzte Flächenlotsystem Reson-MCS 2000 ermöglicht eine Erfassung der Gewässersohle mit einer Punktdichte von unter 1 m in Fahrtrichtung und 1 m quer zur Fahrtrichtung des Peilschiffes. Mit der verwendeten Peilfrequenz von 210 kHz beträgt die Genauigkeit der kinematisch gemessenen Tiefen bei den vorhandenen Tiefenverhältnissen \pm 0,2 m. Die Ortung des Peilschiffes erfolgte mit dem Polarortungssystem Atlas-Polartrack oder per DGPS mit einer Genauigkeit von ca. \pm 0,5 m.

Aus den Messdaten (pro Peilung ca. 1,95 Mio. Geländepunkte) werden jeweils digitale Geländemodelle für ein Gebiet von ca. 4200 x 400 m mit einer Rasterdichte von 2,5 x 2,5 m erstellt und anschließend untereinander verglichen. Die daraus ermittelten Mengenänderungen sind in Abbildung 4 dargestellt.

Die Aufsummierung der Auf- und Abträge in Abbildung 4 ergibt einen Auftrag von lediglich 211.000 m³, obwohl insgesamt in diesem Gebiet rd. 6 Mio. m³ Baggergut eingebracht wurden. Dieser Auftrag ist vor dem Hintergrund der genannten Genauigkeit zu sehen.

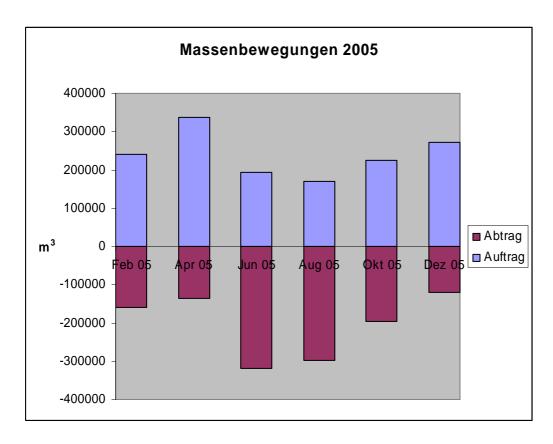


Abbildung 4: Aus Peilungen berechnete Mengenbewegungen (Auf- und Abtrag) im Bereich Neßsand im Jahr 2005

4. Schadstoffuntersuchungen

Schadstoffuntersuchungen erfolgen sowohl an Sedimenten als auch an dem aufbereiteten Baggergut.

- Zur Einschätzung der Entwicklung der Belastung der Sedimente werden in jedem Frühsommer an festgelegten Probennahmepunkten Oberflächenproben des frischen Sediments entnommen (Referenzbeprobung). Diese Proben geben ein Abbild der momentanen Belastungssituation wider und lassen unter Berücksichtigung der Oberwasserführung eine Veränderung der Schadstoffbelastung über die Jahre erkennen.
 - Die Beprobung fand am 9., 10. und 13.6.2005 statt. Die Ergebnisse der chemischen Untersuchungen der Referenzbeprobung 2005 sind in Anlage 3 dargestellt.
- Für die Bewertung von Umlagerungsmaßnahmen sind die Oberflächenproben nur begrenzt geeignet. In den grundsätzlich für Umlagerungen in Betracht kommenden Bereichen sowie in Bereichen mit besonderem Untersuchungsbedarf werden deshalb im Herbst Sedimentkerne über die Baggertiefe entnommen.
 - Von den in der zweiten Jahreshälfte 2004 und in 2005 entnommenen Sedimentproben entfallen 49 Sedimentkerne auf vor Neßsand umgelagertes Baggergut. Die Ergebnisse der chemischen Untersuchungen sind in der Anlage 4 dargestellt.
- ☐ Die wesentlichen Ergebnisse der Schadstoffuntersuchungen des an Land aufbereiteten Schlicks aus Entwässerungsfeldern sowie der METHA sind in Anlage 5 dargestellt.

4.1. Belastung der Sedimente

Die Ergebnisse der Referenzbeprobung zeigen, dass die Schwermetallbelastung der Oberflächensedimente in 2005 auf einem vergleichbaren Niveau wie in den Vorjahren liegt. Die Organozinnbelastung liegt im Median unter dem Niveau der Vorjahre. Insgesamt befindet sich die Schadstoffbelastung im Vergleich zu den Zielwerten der ARGE ELBE nach wie vor auf einem erhöhten Niveau.

Wie auch in den Vorjahren ist die Belastung mit zinnorganischen Verbindungen, insbesondere Tributylzinn (TBT), als deutlich erhöht anzusehen. Abbildung 5 zeigt anhand der Einstufung des ARGE-ELBE-Schemas die Verteilung über das Hafengebiet. Im Jahr 2005 zeigt sich der Schwerpunkt der Belastung im Umfeld der Werften auf Steinwerder weniger stark ausgeprägt.

Die Schadstoffbelastung des vor Neßsand umgelagerten Materials lag im Rahmen der Baggergutempfehlung der ARGE ELBE.

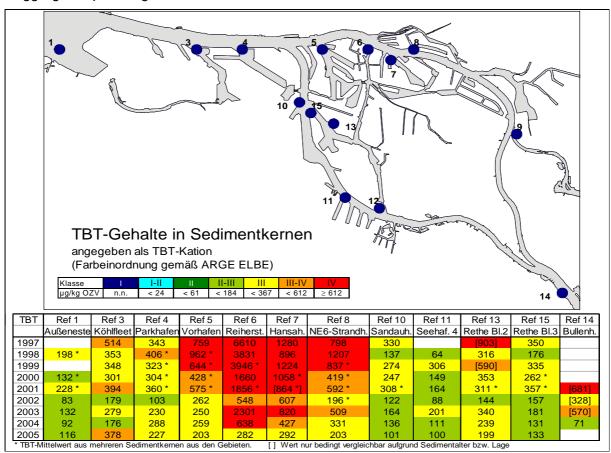


Abbildung 5: Entwicklung der Tributylzinngehalte in Sedimentkernen der Jahre 1997-2005, eingestuft nach dem Bewertungsschema der ARGE ELBE (Angaben in µg OZK/kg TS).

4.2. Ökotoxikologische Untersuchungen

Um die ökotoxikologische Wirkung der Sedimente zu erfassen, wird eine Teilmenge der chemisch untersuchten Sedimente mit einer Biotestbatterie untersucht. Hierzu werden Algen, Bakterien und Daphnien den Eluaten und Porenwässern (seit 2005, hergestellt nach der BfG-Vorschrift) der Sedimente ausgesetzt und in einem Kontakttest Bakterien mit dem Gesamtsediment zusammen gebracht. Die möglicherweise eintretenden Beeinträchtigungen der Organismen werden gemessen (s. Anlage 6).

Wie in den Vorjahren wurden auf diese Weise sowohl an den Oberflächensedimenten als auch an ausgewählten Kernproben ökotoxikologische Untersuchungen durchgeführt. Da es in Hamburg noch keinen Bewertungsmaßstab für diese Ergebnisse gibt, werden sie bisher nur unterstützend herangezogen.

Zur Beschreibung der ökotoxikologischen Wirkungen auf die unterschiedlichen Modellorga-

nismen wurde das in der HABAK von der BfG vorgeschlagene Verfahren angewandt. Hierbei wird die von einer Umweltprobe ausgehende Toxizität dadurch charakterisiert, um wievielmal eine Probe im Verhältnis 1:2 verdünnt werden muss, damit sie nicht mehr signifikant toxisch wirkt. Angegeben wird dieses als pT-Wert (pT 0 – unverdünnt bis pT>6 - mindestens sechsmal verdünnt). Dieses Verfahren kann nur bei den Tests angewandt werden, bei denen mit Verdünnungsreihen gearbeitet wird, also z. Zt. noch nicht für den Kontakttest mit Gesamtsediment.

Den Sedimenten werden anschließend Toxizitätsklassen 0 – VI zugeordnet, sie werden durch den pT-Wert des empfindlichsten Organismus innerhalb der Testbatterie bestimmt.

Die Interpretation von Biotesten kann durch auftretende Wachstumsförderungen erschwert werden, da diese mögliche Toxizitäten überdecken und somit zu falsch negativen Befunden führen. Andererseits können aber auch natürliche Faktoren des Systems im Labor zu falsch positiven Befunden führen.

Das 2005 umgelagerte Baggergut weist überwiegend Toxizitäten der Toxizitätsklasse II oder III auf. Die an drei Proben festgestellten Toxizitätsklassen V oder VI sind teilweise nicht plausibel (z.B. frische Sedimente der Außeneste) oder haben sich im folgenden Jahr nicht bestätigt (Süderelbe Blatt 5).

4.3. Sauerstoffzehrungspotential der Sedimente.

Bei der Umlagerung von Baggergut kann es durch die chemische und biologische Oxidation reduzierter Sedimente zu einer Sauerstoffzehrung im Gewässer kommen. In der WSV wird die Messung des Sauerstoffzehrungspotentials angewendet, um den Einfluss auf die Gewässergüte abschätzen zu können.

Das chemische Sauerstoffzehrungspotential wurde im Zeitraum 2004/05 an 47 Sedimentkernen untersucht. Die Sauerstoffzehrung nach 180 Minuten liegt bei einem Mittelwert von $0.5 \text{ mg } O_2/\text{kg TS}$ bei einer Spanne von $0.01 \text{ bis } 1.9 \text{ mg } O_2/\text{kg TS}$.

Die Sauerstoffzehrungswerte in 2005 liegen etwas höher als die Befunde des Vorjahres. Im Sommer 2005 fand ein Laborwechsel statt; seitdem werden tendenziell höhere Sauerstoffzehrungswerte vorgefunden. Eine Vergleichsuntersuchung zwischen beiden Laboren bestätigte die Vermutung, dass die Zehrungsunterschiede auf einen Laborfaktor zurückzuführen sind. Es wird deswegen von keiner signifikanten Änderung der Sauerstoffzehrung des Sediments ausgegangen.

4.4. Weitere Untersuchungen

Weitere Untersuchungen wurden im Einbringbereich in 2005 nicht durchgeführt.

5. Berechnung der Schadstofffrachten

Die Baggerungen im Hamburger Hafen erfolgen zur Sicherung ausreichender Wassertiefen für die Schifffahrt und damit zur Gewährleistung der Funktionsfähigkeit des Hafens. Durch die Landbehandlung schadstoffbelasteter Sedimente entnimmt Hamburg einen Teil der Schadstofffracht der Elbe und trägt damit zu einer entsprechenden Entlastung der Nordsee bei. Über die an Land entsorgten Mengen wird der Umweltbehörde eine Bilanz gem. Abfallwirtschaftskonzept- und bilanzverordnung vorgelegt.

Von der Wassergütestelle Elbe werden die Elbefrachten an der Dauermessstelle Schnackenburg ermittelt. Nicht berücksichtigt werden hier die zwischen Schnackenburg und Hamburg hinzukommenden Schadstofffrachten oder auch Frachten, die sich mit den Schwebstoffen in diesem Bereich ablagern bzw. remobilisiert werden. Da für das Jahr 2005 noch keine Frachtenermittlung vorliegt, werden vergleichsweise die Frachten des Jahres 2004 dargestellt.

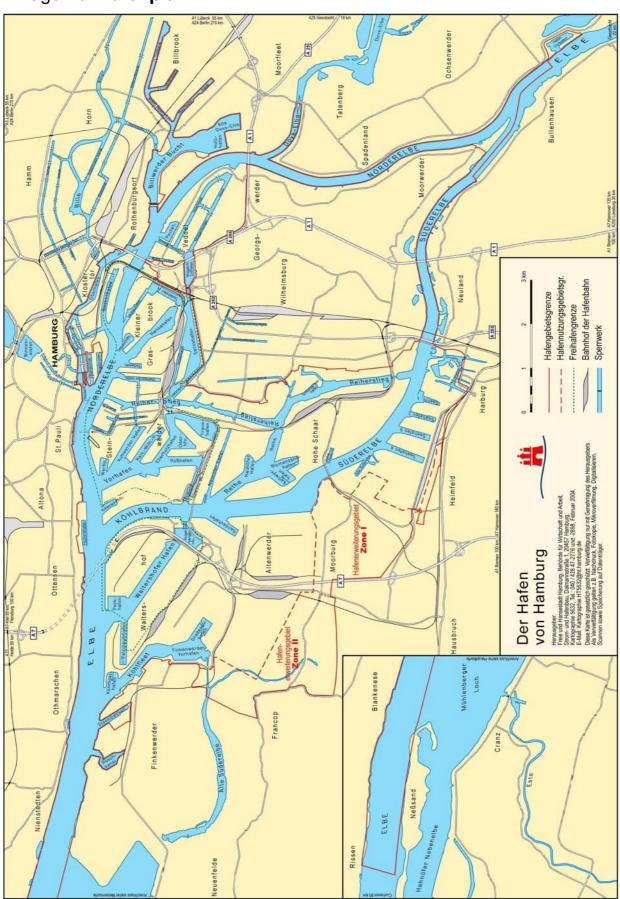

Die Frachtberechnungen sind, wie auch die zugrunde liegende Massenermittlung, mit methodischen Unsicherheiten behaftet. Aufgrund methodischer Probleme erfolgt die Berechnung lediglich für Schwermetalle, Arsen und zinnorganische Verbindungen.

Tabelle 3: Abgeschätzte Schadstofffrachten 2005

Schadstoff	Einheit	Landverbringung	Elbe Schnackenburg 2004
Arsen	t/a	16,2	45
Blei	t/a	45	59
Cadmium	t/a	1,7	5,2
Kupfer	t/a	68	71
Nickel	t/a	15,5	54
Quecksilber	t/a	1,0	1,0
Zink	t/a	262	700
Mono-Butylzinn	kg Sn /a	74	k.A.
Di-Butylzinn	kg Sn /a	25	k.A.
Tri-Butylzinn	kg Sn /a	146	k.A.
Tetra-Butylzinn	kg Sn /a	18	k.A.

Die Landfrachten sind insgesamt etwas geringer als im Vorjahr. Im Mittel liegt die Entnahme mit Baggergut bei den Metallen bei einem Drittel bis der Hälfte.

Anlage 1 / Hafenplan

Anlage 2

Gebaggerte Mengen in m³ Profilmaß, unterteilt nach Herkunft und Verbleib

Herkunft		Umlagerung	9		Landbehandlung		Gewässerun Herrichtung	Summe	
	Neßsand	Nordsee	Wasser-	Mischboden	Sand für	Boden zur	Sand für	Boden zu	
		Tonne E3	injektions- verfahren (WID)	zur Behandlung	Baumaßnahmen der Baggergut- entsorgung	Entsorgung	Aufhöhungen	Verklappung bei Strombau- maßnahmen	
Athabaskaufer				1.200					1.200
Außeneste			30.000						30.000
Billwerder Bucht				4.400					4.400
Dradenauhafen	25.800	ĺ		4.100					29.900
Elbufer	293.400			14.800	400				308.600
Ellerholzhafen	87.600			57.000					144.600
Finkenwerd.Vorhafen				1.400	4.600				6.000
Fleete/Speicher	7.700			1.200					8.900
Grasbrookhafen				7.500	700				8.200
Hansahafen	112.100			95.100	29.100				236.300
Innere Durchfahrt				200					200
Köhlbrand	404.900	366.200		100					771.200
Köhlfleet / Köhlfleethafen	531.900			600					532.500
Kohlenschiffhafen				200					200
Kuhwerder Hafen				24.100					24.100
Kuhwerder Vorhafen	842.900			11.600					854.500
Moldauhafen				15.500					15.500
MueggHovek.westl.T.				35.900					35.900
Muegg.Zollh.m.Durchf.				600	400				1.000
Museumhafen Övelgönne				6.700					6.700
Neuhöfer Hafen	5.200		1.500	300					7.000
Nördlicher Reiherstieg	1.900			167.400	300				169.600
Norderelbe (Blatt 6-7)	1.682.400	219.000		5.900	23.600				1.930.900
Parkhafen / Waltershofer Hafen	1.042.000			77.100	161.300	92.700	67.600	13.700	1.454.400

Herkunft		Umlagerung			Landbehandlung			terhaltung und von Flächen	Summe
	Neßsand	Nordsee Tonne E3	Wasser- injektions- verfahren (WID)	Mischboden zur Behandlung	Sand für Baumaßnahmen der Baggergut- entsorgung	Boden zur Entsorgung	Sand für Aufhöhungen	Boden zu Verklappung bei Strombau- maßnahmen	
Petroleumhafen	43.400								43.400
Peutehafen		Ì		73.400					73.400
Peutekanal				6.300					6.300
Reiherstieg Vorhafen			3.000						3.000
Rethe	216.200			179.500					395.700
Rosshafen				14.600					14.600
Rugenberger Hafen			2.000						2.000
Sandauhafen	92.800			11.100					103.900
Seehafen 2		1		700					700
Seehafen 4			4.500	3.600		9.500			17.600
Sonstige kleine Häfen				700					700
Steendiekkanal			5.000	9.300					14.300
Steinwerder Hafen				83.200					83.200
Suederelbe Blatt 5	711.800	230.800		27.700	24.200			205.400	1.199.900
Suederelbe Blatt 2-3					29.100				29.100
Südlicher Reiherstieg	2.700			16.500					19.200
Suedwesthafen				3.200					3.200
Tatenberger Schleuse				3.400					3.400
Unterelbe	56.400			1.000	656.800				714.200
Werfthafen B+V				28.600					28.600
Summe	6.161.100	816.000	46.000	995.700	930.500	102.200	67.600	219.100	9.338.200

Anlage 3
Statistische Auswertung der Referenzproben 2005

Parameter	Einheit	Anzahl	N/RG	Min	Median	Mittelwert	90 Parz	Max
Trockensubstanz	Gew.% OS	14	0	22,1	32,8	35,4	53,2	54,4
Glühverlust	Gew.% TS	14	0	3,2	7,3	7,8	12,5	13,2
TOC (C)	Gew.% TS	14	0	0,4	7,3 2,7	2,9	5,4	5,9
Siebanalyse	Gew. /6 13			0,4			3,4	3,3
Fraktion < 20 µm	Gew% TS	14	0	25,1	48,9	49,7	71,6	75,1
Fraktion 20 - 63 µm	Gew% TS	14	0	12,1	46,9 16,8	49, <i>1</i> 16,9	20,1	23,5
Fraktion 63 - 100 µm	Gew% TS	14		7				
Fraktion 100 - 200 µm	Gew% TS	14	0		21,8	21,3	39,8 15	48,5
Fraktion 200 - 630 µm			0 0	2,9	8,6	9,6		19,8
· ·	Gew% TS	14		0,5	1,2	2,4	6,5	10,7
Frakt. 630 - 1000 µm	Gew% TS	14	13	<0,1	<0,1	k.MW	<0,1	0,9
Frakt. 1000-2000 µm	Gew% TS	14	13	<0,1	<0,1	k.MW	<0,1	0,1
Fraktion > 2000 µm	Gew% TS	14	13	<0,1	<0,1	k.MW	<0,1	0,2
Fraktion < 63 µm	Gew% TS	14	0	38,5	67,9	66,6	86,6	87,7
Fraktion < 100 μm	Gew% TS	14	0	68,3	90	87,9	93,8	96,5
Summenparameter	<i> </i> T 2			4500	400=		0000	0000
Stickstoff	mg/kg TS	14	0	1520	4065	4194	6239	6900
Phosphor	mg/kg TS	14	0	710	1350	1630	2770	2900
AOX (CI)	mg/kg TS	14	0	38	68	67	93	100
Metalle aus der Gesamt								-
Arsen	mg/kg TS	14	0	9,6	19	21	33	38
Blei	mg/kg TS	14	0	20	44	50	85	93
Cadmium	mg/kg TS	14	0	0,72	2,4	2,7	5	5,8
Chrom	mg/kg TS	14	0	21	37	40	62	66
Kupfer	mg/kg TS	14	0	18	52	52	85	92
Nickel	mg/kg TS	14	0	11	22	22	35	38
Quecksilber	mg/kg TS	14	0	0,47	1,1	1,4	2,4	2,6
Zink	mg/kg TS	14	0	150	400	459	834	890
Metalle aus der Fraktion	i <20 μm							
Arsen <20 µm	mg/kg TS	14	0	30	35	36	42	42
Blei <20 µm	mg/kg TS	14	0	76	89	93	110	110
Cadmium <20 µm	mg/kg TS	14	0	2,5	4,6	4,8	6,7	6,8
Chrom <20 µm	mg/kg TS	14	0	58	67	69	79	91
Kupfer <20 µm	mg/kg TS	14	0	69	89	91	110	120
Nickel <20 µm	mg/kg TS	14	0	34	38	39	43	44
Quecksilber <20 µm	mg/kg TS	14	0	1,5	2	2,3	3,1	4,1
Zink <20 µm	mg/kg TS	14	0	560	780	816	1070	1100
Mineralölkohlenwassers	stoffe							
Mineralöl	mg/kg TS	14	0	92	245	561	1400	2000
Mineralöl C10-C25	mg/kg TS	14	5	<50	88	243	606	1000
Polycyclische Aromater	1							
Naphthalin	mg/kg TS	14	6	<0,05	0,07	0,14	0,31	0,44
Acenaphthen	mg/kg TS	14	12	<0,05	<0,05	k.MW	0,09	0,22
Acenaphtylen	mg/kg TS	14	13	<0,05	<0,05	k.MW	0,05	0,06
Fluoren	mg/kg TS	14	6	<0,05	0,06	0,06	0,07	0,17
Anthracen	mg/kg TS	14	4	<0,05	0,07	0,08	0,11	0,18
Phenanthren	mg/kg TS	14	0	0,13	0,3	0,35	0,46	1,00
Fluoranthen	mg/kg TS	14	0	0,11	0,26	0,34	0,67	0,68
Pyren	mg/kg TS	14	0	0,11	0,23	0,32	0,63	0,65
Benz(a)anthracen	mg/kg TS	14	0	0,08	0,16	0,21	0,39	0,40
Chrysen	mg/kg TS	14	0	0,07	0,15	0,19	0,38	0,39
Benzo(b+k)fluoranthen	mg/kg TS	14	0	0,11	0,25	0,33	0,64	0,68

Indeno(1.2.3-cd)pyren mg/kg TS											
Benzo(ghi)perylen mg/kg TS 14 4 <0,05 0,07 0,1 0,21 0,22 Dibenz(ah)anthracen mg/kg TS 14 10 <0,05	· · · · · · · · · · · · · · · · · · ·						0,13				
Dibenz(ah)anthracen mg/kg TS 14 10 <0,05 <0,05 k.MW 0,06 0,11 PAK Summe 6 g.BG mg/kg TS 14 0 0,38 0,72 2,53 4,2 2,03 PAK Summe 16 g.BG mg/kg TS 14 0 1,11 2,17 0,99 1,94 4,25 Polychlorierte Biphenyle PCB 28	Indeno(1.2.3-cd)pyren										
PAK Summe 6 g.BG mg/kg TS 14 0 0,38 0,72 2,53 4,2 2,03 PAK Summe 16 g.BG mg/kg TS 14 0 1,11 2,17 0,99 1,94 4,25 POBychlorierte Biphenyle PCB 28 μg/kg TS 14 0 0,3 1,0 1,1 2,3 2,5 PCB 28 μg/kg TS 14 0 0,4 1,6 1,6 2,7 3,2 PCB 101 μg/kg TS 14 0 1,2 2,4 2,6 4 5,4 PCB 118 μg/kg TS 14 0 1,0 1.8 2,0 3,2 4,2 PCB 138 μg/kg TS 14 0 3,5 6,7 7,3 11,7 14,0 PCB 180 μg/kg TS 14 0 3,5 6,7 7,3 11,7 14,0 PCB Summe 6 g.BG μg/kg TS 14 0 1,0 1,2 2,8 37,6 43,0 <t< td=""><td>Benzo(ghi)perylen</td><td>mg/kg TS</td><td>14</td><td>4</td><td><0,05</td><td>0,07</td><td>0,1</td><td>0,21</td><td>0,22</td></t<>	Benzo(ghi)perylen	mg/kg TS	14	4	<0,05	0,07	0,1	0,21	0,22		
PAK Summe 16 g.BG mg/kg TS 14 0 1,11 2,17 0,99 1,94 4,25 Polychlorierte Biphenyle PCB 28 μg/kg TS 14 0 0,3 1,0 1,1 2,3 2,5 PCB 52 μg/kg TS 14 0 0,4 1,6 1,6 2,7 3,2 PCB 101 μg/kg TS 14 0 1,2 2,4 2,6 4 5,4 PCB 118 μg/kg TS 14 0 1,0 1,8 2,0 3,2 4,2 PCB 153 μg/kg TS 14 0 2,1 3,9 4,3 6,9 7,4 PCB 180 μg/kg TS 14 0 1,6 3,7 3,9 6,6 7,6 PCB Summe 6 g.BG μg/kg TS 14 0 1,1 19,7 22,8 37,6 43,0 Hexachloreyclohexane alpha-HCH μg/kg TS 14 0 0,4 1,0 1,2 2,3 <td< td=""><td>Dibenz(ah)anthracen</td><td>mg/kg TS</td><td>14</td><td>10</td><td><0,05</td><td><0,05</td><td>k.MW</td><td>0,06</td><td>0,11</td></td<>	Dibenz(ah)anthracen	mg/kg TS	14	10	<0,05	<0,05	k.MW	0,06	0,11		
Polychlorierte Biphenyle PCB 28	PAK Summe 6 g.BG	mg/kg TS	14	0	0,38	0,72	2,53	4,2	2,03		
PCB 28	PAK Summe 16 g.BG	mg/kg TS	14	0	1,11	2,17	0,99	1,94	4,25		
PCB 52 μg/kg TS 14 0 0.4 1,6 1,6 2,7 3,2 PCB 101 μg/kg TS 14 0 1,2 2,4 2,6 4 5,4 PCB 118 μg/kg TS 14 0 1,0 1,8 2,0 3,2 4,2 PCB 138 μg/kg TS 14 0 2,1 3,9 4,3 6,9 7,4 PCB 153 μg/kg TS 14 0 3,5 6,7 7,3 11,7 14,0 PCB Summe 6 g.BG μg/kg TS 14 0 1,6 3,7 3,9 6,6 7,6 PCB Summe 7 g.BG μg/kg TS 14 0 1,1 17,9 20,8 34,3 38,8 PCB Summe 7 g.BG μg/kg TS 14 0 0,4 1,0 1,2 2,8 37,6 43,0 Hexachlorcyclohexane alpha-HCH μg/kg TS 14 0 0,4 1,0 1,2 2,3 2,4 bet	Polychlorierte Biphenyle										
PCB 101 μg/kg TS 14 0 1,2 2,4 2,6 4 5,4 PCB 118 μg/kg TS 14 0 1,0 1,8 2,0 3,2 4,2 PCB 138 μg/kg TS 14 0 2,1 3,9 4,3 6,9 7,4 PCB 180 μg/kg TS 14 0 3,5 6,7 7,3 11,7 14,0 PCB Summe 6 g.BG μg/kg TS 14 0 9,1 17,9 20.8 34,3 38,8 PCB Summe 7 g.BG μg/kg TS 14 0 9,1 17,9 20.8 34,3 38,8 PCB Summe 7 g.BG μg/kg TS 14 0 0,4 1,0 1,2 2,8 37,6 43,0 Hexachlorcyclohexane alpha-HCH μg/kg TS 14 0 0,4 1,0 1,2 2,3 2,4 beta-HCH μg/kg TS 14 0 0,4 1,0 1,2 2,3 2,4 <	PCB 28	μg/kg TS	14	0	0,3	1,0	1,1	2,3	2,5		
PCB 118	PCB 52	μg/kg TS	14	0	0,4	1,6	1,6	2,7	3,2		
PCB 138 μg/kg TS 14 0 2,1 3,9 4,3 6,9 7,4 PCB 153 μg/kg TS 14 0 3,5 6,7 7,3 11,7 14,0 PCB 180 μg/kg TS 14 0 1,6 3,7 3,9 6,6 7,6 PCB Summe 6 g.BG μg/kg TS 14 0 9,1 17,9 20,8 34,3 38,8 PCB Summe 7 g.BG μg/kg TS 14 0 10,1 19,7 22,8 37,6 43,0 Hexachlorcyclohexane alpha-HCH μg/kg TS 14 0 0,4 1,0 1,2 2,3 2,4 beta-HCH μg/kg TS 14 0 0,4 1,0 1,2 2,3 2,4 beta-HCH μg/kg TS 14 6 <0,1	PCB 101	μg/kg TS	14	0	1,2	2,4	2,6	4	5,4		
PCB 153 μg/kg TS 14 0 3,5 6,7 7,3 11,7 14,0 PCB 180 μg/kg TS 14 0 1,6 3,7 3,9 6,6 7,6 PCB Summe 6 g.BG μg/kg TS 14 0 9,1 17,9 20,8 34,3 38,8 PCB Summe 7 g.BG μg/kg TS 14 0 10,1 19,7 22,8 37,6 43,0 Hexachlorcyclohexane alpha-HCH μg/kg TS 14 0 0,4 1,0 1,2 2,3 2,4 beta-HCH μg/kg TS 14 1 <0,1	PCB 118	μg/kg TS	14	0	1,0	1,8	2,0	3,2	4,2		
PCB 180 μg/kg TS 14 0 1,6 3,7 3,9 6,6 7,6 PCB Summe 6 g.BG μg/kg TS 14 0 9,1 17,9 20,8 34,3 38,8 PCB Summe 7 g.BG μg/kg TS 14 0 10,1 19,7 22,8 37,6 43,0 Hexachlorcyclohexane alpha-HCH μg/kg TS 14 0 0,4 1,0 1,2 2,3 2,4 beta-HCH μg/kg TS 14 1 0,0 1,1 0,5 1,3 3,0 delta-HCH μg/kg TS 14 1 0,0 1,0 1,2 2,3 2,4 beta-HCH μg/kg TS 14 1 0,0 1,0 1,0 1,2 2,3 3,0 delta-HCH μg/kg TS 14 1 0,0 1,0 1,0 1,5 1,3 3,0 delta-HCH μg/kg TS 14 0 0,1 0,4 0,5 0,9 1,2 epsilon-HCH μg/kg TS 14 0 0,0 1,4 0,5 0,9 1,2 epsilon-HCH μg/kg TS 14 0 0,0 1,4 0,5 0,9 1,2 epsilon-HCH μg/kg TS 14 0 0,2 0,5 0,5 0,9 1,2 epsilon-HCH μg/kg TS 14 0 1,3 4,3 5 8,5 11,0 0,p-DDE μg/kg TS 14 0 1,3 4,3 5 8,5 11,0 0,p-DDD μg/kg TS 14 0 2,5 6,1 6,8 10,7 15,0 p,p-DDD μg/kg TS 14 0 6,8 20,5 23 42,3 58,0 0,p-DDT μg/kg TS 14 0 6,8 20,5 23 42,3 58,0 0,p-DDT μg/kg TS 14 0 0,6 10,2 20,2 46,6 99,0 Chlorbenzole Pentachlorbenzol μg/kg TS 14 0 0,6 10,2 20,2 46,6 99,0 Chlorbenzole Pentachlorbenzol μg/kg TS 14 0 2,6 11,0 1,8 18,5 31,0 Organozinnverbindungen Monobutylzinn μg/kg TS 14 0 2,6 11,0 11,8 18,5 31,0 Organozinnverbindungen Monobutylzinn μg/kg TS 14 0 31,9 153 146 210 353 Tetrabutylzinn μg/kg TS 14 0 31,9 153 146 210 353 Tetrabutylzinn μg/kg TS 14 1 1 <1 5,6 6,1 9,9 11,1 Dioctylzinn μg/kg TS 14 1 1 <1 5,6 6,1 9,9 11,1 Triphenylzinn μg/kg TS 14 4 4 <1 4,7 4,5 8,2 11,3 Triphenylzinn μg/kg TS 14 4 4 <1 4,7 4,5 8,2 11,3 Triphenylzinn μg/kg TS 14 4 4 <1 4,7 4,5 8,2 11,3	PCB 138	μg/kg TS	14	0	2,1	3,9	4,3	6,9	7,4		
PCB Summe 6 g.BG μg/kg TS 14 0 9,1 17,9 20,8 34,3 38,8 PCB Summe 7 g.BG μg/kg TS 14 0 10,1 19,7 22,8 37,6 43,0 Hexachlorcyclohexane alpha-HCH μg/kg TS 14 0 0,4 1,0 1,2 2,3 2,4 beta-HCH μg/kg TS 14 1 <0,1	PCB 153	μg/kg TS	14	0	3,5	6,7	7,3	11,7	14,0		
PCB Summe 7 g.BG μg/kg TS 14 0 10,1 19,7 22,8 37,6 43,0 Hexachlorcyclohexane alpha-HCH μg/kg TS 14 0 0,4 1,0 1,2 2,3 2,4 beta-HCH μg/kg TS 14 1 <0,1 3,4 5,2 9,6 18,0 gamma-HCH μg/kg TS 14 6 <0,1 0,1 0,5 1,3 3,0 delta-HCH μg/kg TS 14 4 <0,1 0,4 0,5 0,9 1,2 epsilon-HCH μg/kg TS 14 4 <0,1 0,4 0,5 0,9 1,2 epsilon-HCH μg/kg TS 14 9 <0,1 k,MW 0,2 0,3 DDT + Metabolite o.p-DDE μg/kg TS 14 0 0,2 0,5 0,5 0,9 1,2 p,p-DDD μg/kg TS 14 0 2,5 6,1 6,8 10,7 15,0 <td>PCB 180</td> <td>μg/kg TS</td> <td>14</td> <td>0</td> <td>1,6</td> <td>3,7</td> <td></td> <td>6,6</td> <td>7,6</td>	PCB 180	μg/kg TS	14	0	1,6	3,7		6,6	7,6		
PCB Summe 7 g.BG µg/kg TS 14 0 10,1 19,7 22,8 37,6 43,0 Hexachlorcyclohexane alpha-HCH µg/kg TS 14 0 0,4 1,0 1,2 2,3 2,4 beta-HCH µg/kg TS 14 1 <0,1 3,4 5,2 9,6 18,0 gamma-HCH µg/kg TS 14 6 <0,1 0,1 0,5 1,3 3,0 delta-HCH µg/kg TS 14 4 <0,01 0,4 0,5 0,9 1,2 epsilon-HCH µg/kg TS 14 9 <0,1 0,4 0,5 0,9 1,2 epsilon-HCH µg/kg TS 14 9 <0,1 <0,1 kMW 0,2 0,3 DDT + Metabolite 0,p'-DDE µg/kg TS 14 0 0,2 0,5 0,5 0,9 1,2 p,p'-DDE µg/kg TS 14 0 1,3 4,3 5 8,5 11,0 0,p'-DDD µg/kg TS 14 0 2,5 6,1 6,8 10,7 15,0 p,p'-DDD µg/kg TS 14 0 6,8 20,5 23 42,3 58,0 0,p'-DDT µg/kg TS 14 1 <0,2 1,0 2,6 9 13,0 p,p'-DDT µg/kg TS 14 0 0,6 10,2 20,2 46,6 99,0 Chlorbenzole Pentachlorbenzol µg/kg TS 14 0 0,4 1,1 1,5 2,8 3,7 Hexachlorbenzol µg/kg TS 14 0 0,6 10,2 20,2 46,6 99,0 Chlorbenzole Pentachlorbenzol µg/kg TS 14 0 0,4 1,1 1,5 2,8 3,7 Hexachlorbenzol µg/kg TS 14 0 2,6 11,0 11,8 18,5 31,0 Organozinnverbindungen Monobutylzinn µg/kg TS 14 0 13,5 24,2 26,8 42,9 49,8 Tributylzinn µg/kg TS 14 0 31,9 153 146 210 353 Tetrabutylzinn µg/kg TS 14 0 7,1 24,8 32 65,8 70,4 Monooctylzinn µg/kg TS 14 1 1 <1 5,6 6,1 9,9 11,1 Dioctylzinn µg/kg TS 14 1 1 <1 5,6 6,1 9,9 11,1 Dioctylzinn µg/kg TS 14 1 1 <1 5,6 6,1 9,9 11,1 Dioctylzinn µg/kg TS 14 1 1 <1 5,6 6,1 9,9 11,1 Triphenylzinn µg/kg TS 14 1 1 <1 5,6 6,1 9,9 11,1 Triphenylzinn µg/kg TS 14 1 1 <1 5,6 6,1 9,9 11,1 Triphenylzinn µg/kg TS 14 1 1 <1 5,6 6,1 9,9 11,1 Triphenylzinn µg/kg TS 14 1 1 <1 5,6 6,1 9,9 11,1 Triphenylzinn µg/kg TS 14 1 1 <1 5,6 6,1 9,9 11,1 Triphenylzinn µg/kg TS 14 1 1 <1 5,6 6,1 9,9 11,1 Triphenylzinn µg/kg TS 14 1 1 <1 5,6 6,1 9,9 11,1 Triphenylzinn µg/kg TS 14 1 1 <1 5,6 6,1 9,9 11,1 Triphenylzinn µg/kg TS 14 1 4 <1 5,1 5,6 6,1 9,9 11,1 Triphenylzinn µg/kg TS 14 1 1 <1 5,6 6,1 9,9 11,1 Triphenylzinn µg/kg TS 14 1 1 <1 5,6 6,1 9,9 11,1 Triphenylzinn µg/kg TS 14 1 1 <1 5,6 6,1 9,9 11,1 Triphenylzinn µg/kg TS 14 1 1 <1 5,6 6,1 9,9 11,1 Triphenylzinn µg/kg TS 14 1 1 <1 5,6 6,1 9,9 11,1 Triphenylzinn µg/kg TS 14 1 1 <1 5,6 6,1 9,9 11,1 Triphenylzinn µg/kg TS 14 1 1 <1 5,6 6,1 9,9 11,1	PCB Summe 6 g.BG	μg/kg TS	14	0	9,1	17,9	20,8	34,3	38,8		
alpha-HCH µg/kg TS 14 0 0,4 1,0 1,2 2,3 2,4 beta-HCH µg/kg TS 14 1 <0,1	PCB Summe 7 g.BG	μg/kg TS	14	0	10,1	19,7	22,8	37,6	43,0		
beta-HCH μg/kg TS 14 1 <0,1 3,4 5,2 9,6 18,0 gamma-HCH μg/kg TS 14 6 <0,1	<td>Hexachlorcyclohexane</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Hexachlorcyclohexane									
gamma-HCH μg/kg TS 14 6 <0,1	<td>alpha-HCH</td> <td>μg/kg TS</td> <td>14</td> <td>0</td> <td>0,4</td> <td>1,0</td> <td>1,2</td> <td>2,3</td> <td>2,4</td>	alpha-HCH	μg/kg TS	14	0	0,4	1,0	1,2	2,3	2,4	
delta-HCH µg/kg TS 14 4 <0,1 0,4 0,5 0,9 1,2 epsilon-HCH µg/kg TS 14 9 <0,1 <0,1 k.MW 0,2 0,3 DDT + Metabolite o,p'-DDE µg/kg TS 14 0 0,2 0,5 0,5 0,9 1,2 p,p'-DDE µg/kg TS 14 0 1,3 4,3 5 8,5 11,0 o,p'-DDD µg/kg TS 14 0 2,5 6,1 6,8 10,7 15,0 p,p'-DDD µg/kg TS 14 0 6,8 20,5 23 42,3 58,0 o,p'-DDT µg/kg TS 14 1 <0,2	beta-HCH	μg/kg TS	14	1	<0,1	3,4	5,2	9,6	18,0		
epsilon-HCH	gamma-HCH	μg/kg TS	14	6	<0,1	0,1	0,5	1,3	3,0		
DDT + Metabolite o,p'-DDE μg/kg TS 14 0 0,2 0,5 0,5 0,9 1,2 p,p'-DDE μg/kg TS 14 0 1,3 4,3 5 8,5 11,0 o,p'-DDD μg/kg TS 14 0 2,5 6,1 6,8 10,7 15,0 p,p'-DDD μg/kg TS 14 0 6,8 20,5 23 42,3 58,0 o,p'-DDT μg/kg TS 14 1 <0,2	delta-HCH	μg/kg TS	14	4	<0,1	0,4	0,5	0,9	1,2		
o,p'-DDE μg/kg TS 14 0 0,2 0,5 0,5 0,9 1,2 p,p'-DDE μg/kg TS 14 0 1,3 4,3 5 8,5 11,0 o,p'-DDD μg/kg TS 14 0 2,5 6,1 6,8 10,7 15,0 p,p'-DDD μg/kg TS 14 0 6,8 20,5 23 42,3 58,0 o,p'-DDT μg/kg TS 14 1 <0,2	epsilon-HCH	μg/kg TS	14	9	<0,1	<0,1	k.MW	0,2	0,3		
p,p'-DDE μg/kg TS 14 0 1,3 4,3 5 8,5 11,0 o,p'-DDD μg/kg TS 14 0 2,5 6,1 6,8 10,7 15,0 p,p'-DDD μg/kg TS 14 0 6,8 20,5 23 42,3 58,0 o,p'-DDT μg/kg TS 14 1 <0,2	DDT + Metabolite										
o,p'-DDD μg/kg TS 14 0 2,5 6,1 6,8 10,7 15,0 p,p'-DDD μg/kg TS 14 0 6,8 20,5 23 42,3 58,0 o,p'-DDT μg/kg TS 14 1 <0,2	o,p'-DDE	μg/kg TS	14	0	0,2	0,5	0,5	0,9	1,2		
p,p'-DDD μg/kg TS 14 0 6,8 20,5 23 42,3 58,0 o,p'-DDT μg/kg TS 14 1 <0,2	p,p'-DDE	μg/kg TS	14	0	1,3	4,3	5	8,5	11,0		
o,p'-DDT μg/kg TS 14 1 <0,2	o,p'-DDD	μg/kg TS	14	0	2,5	6,1	6,8	10,7	15,0		
p,p'-DDT μg/kg TS 14 0 0,6 10,2 20,2 46,6 99,0 Chlorbenzole Pentachlorbenzol μg/kg TS 14 0 0,4 1,1 1,5 2,8 3,7 Hexachlorbenzol μg/kg TS 14 0 2,6 11,0 11,8 18,5 31,0 Organozinnverbindungen Monobutylzinn μg/kg TS 14 0 26,3 55,3 60,3 93,7 145 Dibutylzinn μg/kg TS 14 0 13,5 24,2 26,8 42,9 49,8 Tributylzinn μg/kg TS 14 0 31,9 153 146 210 353 Tetrabutylzinn μg/kg TS 14 0 7,1 24,8 32 65,8 70,4 Monooctylzinn μg/kg TS 14 1 <1	p,p'-DDD	μg/kg TS	14	0	6,8	20,5	23	42,3	58,0		
Chlorbenzole Pentachlorbenzol μg/kg TS 14 0 0,4 1,1 1,5 2,8 3,7 Hexachlorbenzol μg/kg TS 14 0 2,6 11,0 11,8 18,5 31,0 Organozinnverbindungen Monobutylzinn μg/kg TS 14 0 26,3 55,3 60,3 93,7 145 Dibutylzinn μg/kg TS 14 0 13,5 24,2 26,8 42,9 49,8 Tributylzinn μg/kg TS 14 0 31,9 153 146 210 353 Tetrabutylzinn μg/kg TS 14 0 7,1 24,8 32 65,8 70,4 Monooctylzinn μg/kg TS 14 1 <1	o,p'-DDT	μg/kg TS	14	1	<0,2	1,0	2,6	9	13,0		
Pentachlorbenzol μg/kg TS 14 0 0,4 1,1 1,5 2,8 3,7 Hexachlorbenzol μg/kg TS 14 0 2,6 11,0 11,8 18,5 31,0 Organozinnverbindungen Monobutylzinn μg/kg TS 14 0 26,3 55,3 60,3 93,7 145 Dibutylzinn μg/kg TS 14 0 13,5 24,2 26,8 42,9 49,8 Tributylzinn μg/kg TS 14 0 31,9 153 146 210 353 Tetrabutylzinn μg/kg TS 14 0 7,1 24,8 32 65,8 70,4 Monooctylzinn μg/kg TS 14 1 <1	p,p'-DDT		14	0	0,6	10,2	20,2	46,6	99,0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chlorbenzole										
Hexachlorbenzol μg/kg TS 14 0 2,6 11,0 11,8 18,5 31,0 Organozinnverbindungen Monobutylzinn μg/kg TS 14 0 26,3 55,3 60,3 93,7 145 Dibutylzinn μg/kg TS 14 0 13,5 24,2 26,8 42,9 49,8 Tributylzinn μg/kg TS 14 0 31,9 153 146 210 353 Tetrabutylzinn μg/kg TS 14 0 7,1 24,8 32 65,8 70,4 Monooctylzinn μg/kg TS 14 1 <1	Pentachlorbenzol	μg/kg TS	14	0	0,4	1,1	1,5	2,8	3,7		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			14	0							
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Organozinnverbindung										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			14	0	26,3	55,3	60,3	93,7	145		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	•										
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	-										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-										
Triphenylzinn $\mu g/kg$ TS 14 14 <1 <1 k.MW <1 <1	•			4							
, ,	•			14							

Anlage 4
Statistische Auswertung der Kernproben des vor Neßsand umgelagerten Materials (Sedimentkernproben aus 2004 und 2005)

Parameter	Einheit	Anzahl	N-RG	Min	Median	Mittelwert	00 Porz	Max
Trockensubstanz	Gew.% OS	49	0	26,3	44	45,9	60,5	81,6
Glühverlust	Gew.% US	33	0	20,3 0,57		45,9 6,4	11,2	13,8
					5,8			
TOC (C)	Gew.% TS	49	0	0,1	2,7	2,9	4,8	6,2
Siebanalyse					44	44.4	70.0	77.0
Fraktion < 20 µm	Gew% TS	49	0	3,7	41	41,4	70,2	77,6
Fraktion 20 - 63 µm	Gew% TS	49	0	5,1	18,3	19,2	28,9	37,8
Fraktion 63 - 100 µm	Gew% TS	49	0	2,8	17,3	17,7	30	40,9
Fraktion 100 - 200 µm	Gew% TS	49	0	0,7	11	17,2	46,1	66,5
Fraktion 200 - 630 µm	Gew% TS	49	1	<0,1	2,2	3,3	7,9	19,5
Fraktion 630 - 1000 μm	Gew% TS	49	14	<0,1	0,2	0,5	1	3,7
Fraktion 1000-2000 µm	Gew% TS	49	23	<0,1	0,1	0,3	0,5	2,8
Fraktion > 2000 µm	Gew% TS	49	29	<0,1	<0,1	k.MW	0,4	3,1
Fraktion < 63 µm	Gew% TS	49	0	8,8	60,3	60,6	87,5	92,4
Fraktion < 100 µm	Gew% TS	49	0	20,4	84,2	77,8	96,4	97,4
Summenparameter								
Stickstoff	mg/kg TS	48	0	300	2700	3133	5200	7400
Phosphor	mg/kg TS	48	0	200	1070	1232	1950	3100
Schwefel	mg/kg TS	15	0	1500	3000	3013	4700	5000
AOX (CI)	mg/kg TS	33	0	21	62	69	97	129
Metalle aus der Gesamtfra	ktion							
Arsen	mg/kg TS	40	0	2,9	19	19	30	35
Blei	mg/kg TS	40	0	7,6	41,5	44	71	84
Cadmium	mg/kg TS	40	0	0,17	1,4	1,7	3,2	5,8
Chrom	mg/kg TS	40	0	6,8	38	39	59	74
Kupfer	mg/kg TS	40	0	8,2	37,5	42	66	87
, Nickel	mg/kg TS	40	0	3,6	21,5	22	33	42
Quecksilber	mg/kg TS	40	0	0,1	0,79	0,8	1,3	2,2
Zink	mg/kg TS	40	0	46	270	315	495	830
Metalle aus der Fraktion <								
Arsen <20 μm	mg/kg TS	48	0	32	36	37	41	46
Blei <20 µm	mg/kg TS	48	0	80	95	97	110	140
Cadmium <20 µm	mg/kg TS	48	0	1,6	3,5	3,4	5,4	8
Chrom <20 µm	mg/kg TS	48	0	67	85	85	93	125
Kupfer <20 μm	mg/kg TS	48	0	52	89,5	93	126	221
Nickel <20 µm	mg/kg TS	48	0	38	45	49	67	83
Quecksilber <20 µm	mg/kg TS	48	0	1	1,45	1,6	2,4	3
Zink <20 µm	mg/kg TS	48	0	420	641	651	888	1170
Mineralölkohlenwassersto				720				1170
Mineralöl	mg/kg TS	48	12		130	247	601	1100
Mineralöl C10-C25 (C10-	mg/kg 13	40	13	<50	130	247	681	1100
C20)	mg/kg TS	48	30	9	<50	k.MW	126	610
Mineralöl C21-C40	mg/kg TS	15	1	47	110	170	233	771
Polycyclische Aromaten	9/119 10					:		
Naphthalin	mg/kg TS	48	20	<0,05	0,05	0,19	0,75	1,20
Acenaphtylen	mg/kg TS	48 48	40	<0,03	<0,05	k.MW	0,75	0,09
Acenaphthen	mg/kg TS	48 48	40	<0,02 <0,02	<0,05 <0,05	k.MW	0,05	0,09
•								
Fluoren	mg/kg TS	48 48	29	<0,02	<0,05	k.MW	0,06	0,08
Phenanthren	mg/kg TS	48	3	<0,05	0,14	0,16	0,26	0,32
Anthracen	mg/kg TS	48	24	<0,02	0,05	0,06	0,09	0,13
<u>Fluoranthen</u>	mg/kg TS	48	2	<0,05	0,23	0,24	0,44	0,60

Parameter	Einheit	Anzahl	N <bg< th=""><th>Min</th><th>Median</th><th>Mittelwert</th><th>90.Perz.</th><th>Max</th></bg<>	Min	Median	Mittelwert	90.Perz.	Max
Pyren	mg/kg TS	48	2	<0,05	0,19	0,2	0,37	0,52
Benz(a)anthracen	mg/kg TS	48	5	<0,05	0,13	0,12	0,22	0,30
Chrysen	mg/kg TS	48	5	<0,05	0,11	0,12	0,22	0,35
Benzo(b+k)fluoranthen	mg/kg TS	48	2	<0,05	0,11	0,12	0,33	0,54
Benzo(k)fluoranthen	mg/kg TS	15	0	0,021	0,16	0,13	0,33	0,17
Benzo(a)pyren	mg/kg TS	48	6	<0,021	0,00	0,07	0,13	0,17
Dibenz(ah)anthracen		48 48	32	<0,03	<0,09	k.MW	0,17	0,31
	mg/kg TS	48 48						
Benzo(ghi)perylen Indeno(1.2.3-cd)pyren	mg/kg TS mg/kg TS	48 48	13 18	<0,05 <0,05	0,07 0,06	0,09 0,08	0,15 0,13	0,22 0,25
	mg/kg TS	48 48	0	0,05	0,67	0,08		1,88
PAK Summe 6 g.BG	mg/kg TS	48 48	0	0,25	1,72	1,74	1,28 2,85	3,63
PAK Summe 16 g.BG	1119/kg 13	40		0,014	1,72		2,00	3,03
Polychlorierte Biphenyle		40	20	.0.0	.0.0			
PCB 28	μg/kg TS	49	29	<0,2	<0,2	k.MW	1,1	2,3
PCB 52	μg/kg TS	49	21	<0,2	0,5	0,8	1,6	4,4
PCB 101	μg/kg TS	49	1	<0,2	1,4	1,8	3,7	8,9
PCB 118	μg/kg TS	49	9	<0,2	0,5	0,9	1,6	8,6
PCB 138	μg/kg TS	49	0	0,5	3	3,5	6,8	9,6
PCB 153	μg/kg TS	49	0	0,5	3,2	3,8	6,4	11,0
PCB 180	μg/kg TS	49	0	0,2	1,8	2,3	4,6	8,4
PCB Summe 6 g.BG	μg/kg TS	49	0	1,8	10	12,6	24,6	39,9
PCB Summe 7 g.BG	μg/kg TS	49	0	2	10,78	13,5	26,3	42,9
Hexachlorcyclohexane								
alpha-HCH	μg/kg TS	49	9	<0,1	0,5	0,6	1,5	2,6
beta-HCH	μg/kg TS	49	22	<0,1	0,2	0,7	2,2	4,0
gamma-HCH	μg/kg TS	49	40	<0,1	<0,1	k.MW	0,4	0,6
delta-HCH	μg/kg TS	48	39	<0,1	<0,1	k.MW	0,8	1,2
epsilon-HCH	μg/kg TS	48	47	<0,1	<0,1	k.MW	0,5	0,1
DDT + Metabolite								
o,p'-DDE	μg/kg TS	49	21	<0,2	0,3	0,4	0,7	2,3
p,p'-DDE	μg/kg TS	49	0	0,2	2,1	3,2	6,1	14
o,p'-DDD	μg/kg TS	49	2	<0,2	2,2	3,4	7	24
p,p'-DDD	μg/kg TS	49	0	0,3	4,7	7,3	16,2	36
o,p'-DDT	μg/kg TS	49	20	<0,2	0,5	0,7	1,5	5,1
p,p'-DDT	μg/kg TS	49	2	<0,2	1,9	4,5	9,8	50
Chlorbenzole								
Pentachlorbenzol	μg/kg TS	49	1	<0,2	0,65	1	1,8	3,5
Hexachlorbenzol	μg/kg TS	49	0	0,2	3,3	6,2	14,2	22,1
Organozinnverbindungen								
Monobutylzinn	μg/kg TS	49	0	6,9	52,7	58,9	91	213
Dibutylzinn	μg/kg TS	49	0	2,3	29	28,5	44,2	69
Tributylzinn	μg/kg TS	49	0	19,4	133	176	336	557
Tetrabutylzinn	μg/kg TS	49	1	<1	18,8	23	46,8	95
Monooctylzinn	μg/kg TS	49	25	<1	3,2	k.MW	7,2	12,2
Dioctylzinn	μg/kg TS	49	25	<1	2,1	k.MW	4,3	8,7
Triphenylzinn	μg/kg TS	49	46	<1	<1	k.MW	2,8	<4
Tricyclohexylzinn	μg/kg TS	49	49	<1	<1	k.MW	<4	<4
Sauerstoffzehrung								
02-zehrung n. 180 min	g O2/kg TS	47	0	0,01	0,39	0,5	0,9	1,9

Anlage 5

Statistische Auswertung der Schadstoffbelastung des in der METHA und Entwässerungsfeldern klassierten Schlicks 2005

Parameter	Einheit	Anzahl	N <bg< th=""><th>Min</th><th>Median</th><th>Mittelw.</th><th>90.Perz.</th><th>Max</th></bg<>	Min	Median	Mittelw.	90.Perz.	Max
Trockensubstanz	Gew%	40	0	20,6	25,2	32,6	63,2	70,1
Fraktion < 20 µm	Gew%	39	0	31,5	44	44,2	49,4	54,9
Fraktion 20 - 63 µm	Gew%	39	0	13,2	21,4	21,7	25,6	28
Fraktion 63 - 100 µm	Gew%	39	0	6,5	16,1	15,5	19,1	21,4
Fraktion 100 - 200 µm	Gew%	39	0	3,2	13,2	12,6	16,3	18,8
Fraktion 200 - 630 µm	Gew%	39	0	2,3	4,9	5,2	9,6	11,5
Fraktion 630 - 1000 µm	Gew%	39	7	< 0,1	0,1	0,3	0,9	2,3
Fraktion > 1000 µm	Gew%	39	1	< 0,1	0,2	0,5	0,9	4,7
Glühverlust	Gew% TS	40	0	5,3	7,6	7,6	8,6	9,9
TOC (C)	Gew% TS	40	0	1,9	3,35	3,3	3,8	5,5
CaCO ₃ nach Scheibler	mg/kg TS	40	0	52026	62020	62074	68721	78410
pH-Wert am Feststoff	-	34	0	6,5	7,2	7,1	7,3	7,5
Cyanid ges.	mg/kg TS	40	4	< 0,05	0,96	1,1	1,8	4,1
EOX	mg/kg TS	38	9	< 1	1,7	1,7	2,7	3,3
Elemente in der Gesamtfra								
Arsen	mg/kg TS	40	0	17	32	31	41	46
Blei	mg/kg TS	40	0	38	85	85	121	199
Cadmium	mg/kg TS	40	0	1,2	3,4	3,3	4,6	5,1
Chrom ges.	mg/kg TS	40	0	32	55	54	65	89
Kupfer	mg/kg TS	40	0	43	122	128	214	270
Nickel	mg/kg TS	40	0	19	30	29	34	42
Quecksilber	mg/kg TS	40	0	0,64	1,9	1,9	2,8	3,4
Zink	mg/kg TS	40	0	280	504	497	603	854
Thallium	mg/kg TS	5	5	< 0,5	< 0,5	k.MW	< 0,5	< 0,5
Eisen ges.	mg/kg TS	5	0	21000	21000	22400	24600	25000
Fluor	mg/kg TS	5	0	110	180	184	268	320
Chlor	mg/kg TS	5	0	80	370	322	418	450
Calcium	mg/kg TS	5	0	22000	25000	25000	27800	29000
Magnesium	mg/kg TS	5	0	2900	4100	3940	4380	4500
Mangan	mg/kg TS	5	0	1200	1400	1440	1620	1700
Kohlenwasserstoffe								
Lipophile Stoffe	mg/kg OS	40	0	29	198	189	285	395
Schwerfl. Lipophile Stoffe	mg/kg TS	40	0	48	800	731	1200	1600
Mineralöl (C10-C40)	mg/kg TS	40	0	110	390	438	841	1200
Mineralöl (C10-C22)	mg/kg TS	40	0	26	107	114	199	360
BTEX-Verbindungen								
Benzol	mg/kg TS	40	38	< 0,005	< 0,005	k.MW	< 0,005	0,047
Toluol	mg/kg TS	40	16	< 0,005	0,007	0,012	0,019	0,11
Ethylbenzol	mg/kg TS	40	38	< 0,005	< 0,005	k.MW	< 0,005	0,013
Xylol (o-)	mg/kg TS	40	39	< 0,005	< 0,005	k.MW	< 0,005	0,015
Xylol (m-, p-)	mg/kg TS	40	34	< 0,005	< 0,005	k.MW	0,006	0,024
Summe BTEX 1/1 BG	mg/kg TS	40	0	0,025	0,027	0,035	0,042	0,192
Polycyclische aromatisch	e Verbindung	en						
Naphthalin	mg/kg TS	40	7	< 0,05	0,20	0,24	0,40	1,60
Acenaphthen	mg/kg TS	40	10	< 0,05	0,08	0,11	0,17	0,88
Acenaphthylen	mg/kg TS	40	21	< 0,05	< 0,05	k.MW	0,07	0,39
Fluoren	mg/kg TS	40	8	< 0,05	0,15	0,18	0,27	1,20
Anthracen	mg/kg TS	40	8	< 0,05	0,17	0,21	0,31	1,30

Danamatan	Finds alt	Ammaki	N DO	N4:	Madian	Missala	00 Daw	Marr
Parameter	Einheit	Anzahl		Min	Median	Mittelw.	90.Perz.	Max
Phenanthren	mg/kg TS	40	0	0,05	0,61	0,72	1,21	4,80
Fluoranthen	mg/kg TS	40	0	0,09	0,87	0,94	1,33	5,50
Pyren	mg/kg TS	40	0	0,08	0,69	0,73	1,03	4,20
Benz(a)anthracen	mg/kg TS	40	3 3	< 0,05	0,37	0,40	0,62	2,80
Chrysen	mg/kg TS	40	3	< 0,05	0,37	0,38	0,58	2,60
Benzo(b)fluoranthen	mg/kg TS	40		< 0,05	0,36	0,39	0,56	2,70
Benzo(k)fluoranthen	mg/kg TS	40	7	< 0,05	0,17	0,19	0,27	1,20
Benzo(a)pyren	mg/kg TS	40	4	< 0,05	0,29	0,32	0,49	2,20
Indeno(1,2,3-cd)pyren	mg/kg TS	40	11	< 0,05	0,07	0,09	0,13	0,58
Benzo(ghi)perylen	mg/kg TS	40	7 7	< 0,05	0,27	0,31	0,41	2,30
Dibenz(ah)anthracen	mg/kg TS	40 40		< 0,05 0,87	0,26	0,28	0,40	1,70
Summe PAK (16) 1/1 BG	mg/kg TS	40	0	0,67	4,94	5,57	8,48	35,95
Nährstoffe				450				
Ammonium	mg/kg TS	5	0	150	660	622	908	920
Stickstoff gesamt	mg/kg TS	5	0	1800	3500	3240	3940	4100
Phosphor gesamt	mg/kg TS	5	0	1400	1900	1900	2240	2400
Schwefel gesamt	mg/kg TS	5	0	3100	3900	4220	5120	5200
Polychlorierte Biphenyle		40			4.0		0.7	-
PCB-Nr. 28	μg/kg TS	40	15	< 1	1,9	2,3	3,7	7,2
PCB-Nr. 52	μg/kg TS	40	8	< 1	4,9	5,1	7,8	25,0
PCB-Nr. 101	μg/kg TS	40	6	< 1	6,7	7,1	11,1	38,0
PCB-Nr. 118	μg/kg TS	40	10	< 1	3,1	4,1	6,5	22,0
PCB-Nr. 138	μg/kg TS	40	2	< 1	8,6	10,2	18,0	57,0
PCB-Nr. 153	μg/kg TS	40	2	< 1	11,0	12,5	20,0	73,0
PCB-Nr. 180	μg/kg TS	40	4	< 1	6,7	8,2	14,1	50,0
Summe PCB 1/1 BG	µg/kg TS	40	0	7	42,1	49,4	75,2	272,2
Hexachlorcyclohexane				. 4	. 4			-
alpha-HCH	μg/kg TS	5	3	< 1	< 1	k.MW	5,4	6 4 F
beta-HCH	μg/kg TS	5	2	< 1	2,9	2,76	4,3	4,5
gamma-HCH delta-HCH	μg/kg TS	5	4	< 1 < 1	< 1	k.MW	3,1	5,8
epsilon-HCH	μg/kg TS	5 5	3 4	< 1 < 1	< 1 < 1	k.MW k.MW	5,5	6,8 2,1
DDT-, DDD-, DDE-Isomere	μg/kg TS					K.IVIVV		<u>_</u> _, I
					2	2	2.6	2.0
o,p-DDE	μg/kg TS	5	1	< 1	2,2	2,0	2,6	2,9
p.p-DDE	μg/kg TS	5	0	< 1	7,1	7,0	10,0	10
o.p-DDD p.p-DDD	μg/kg TS	5	0	2,3	14	11 19	14	14
1	μg/kg TS	5 5	0 2	5,2 < 1	23	9,2	26 25	28 39
o.p-DDT p.p-DDT	μg/kg TS	5 5	1	< 1 < 1	2,3 10	9,2 43	25 121	194
Chlorbenzole	μg/kg TS	<u>o</u>			10	43	121	194
				. 10	. 40		. 10	. 10
Pentachlorbenzol	μg/kg TS	5 5	5	< 10 < 5	< 10 < 5	k.MW	< 10 19,4	< 10
Hexachlorbenzol	µg/kg TS	5	3	< 5	< 5	k.MW	19,4	25
Chlorphenole				- 40	. 40		. 40	
Pentachlorphenol	μg/kg TS	5	5	< 10	< 10	k.MW	< 10	< 10
PCDD/F	n a/l. ~ TO				70			
Dioxine I-TEQ (NATO)	ng/kg TS	5	0	32	73	66	90	94
Organozinnverbindungen				07.4	044	005	050	
Mono-Butylzinn (Kation)	μg/kg TS	39	0	27,1	211	205	352	414
Di-Butylzinn (Kation)	μg/kg TS	39	0	31	96 702	90	119	142
Tri-Butylzinn (Kation)	μg/kg TS	39	0	164	702	686	966	1790
Tetra-Butylzinn (Kation)	μg/kg TS	39	0	11,6	107	95	134	163
Mono-Octylzinn (Kation)	μg/kg TS	39	3	< 1	8,4	8,3	13,1	18,6
Di-Octylzinn (Kation)	μg/kg TS	39	5	< 1	5,8	5,6	9,3	16,5

Parameter	Einheit	Anzahl	N <bg< th=""><th>Min</th><th>Median</th><th>Mittelw.</th><th>90.Perz.</th><th>Max</th></bg<>	Min	Median	Mittelw.	90.Perz.	Max
Tri-Phenylzinn (Kation)	μg/kg TS	39	22	< 1	< 1	k.MW	5,3	13,8
Tri-Cyclohexylzinn (Kation)	μg/kg TS	39	39	< 1	< 1	k.MW	< 1	< 1
Mono-Butylzinn (Sn)	μg Sn/kg TS	39	0	18,3	142	141	240	279
Di-Butylzinn (Sn)	μg Sn/kg TS	39	0	16	49	47	63	74
Tri-Butylzinn (Sn)	μg Sn/kg TS	39	0	67	273	277	395	731
Tetra-Butylzinn (Sn)	μg Sn/kg TS	39	0	4	37	35	56	75
Mono-Octylzinn (Sn)	μg Sn/kg TS	39	3	< 0,5	4,3	4,4	7,7	10,1
Di-Octylzinn (Sn)	μg Sn/kg TS	39	5	< 0,3	2,1	2,1	3,5	5,7
Tri-Phenylzinn (Sn)	μg Sn/kg TS	39	22	< 0,3	< 0,3	k.MW	1,8	4,7
Tri-Cyclohexylzinn (Sn)	μg Sn/kg TS	39	39	< 0,4	< 0,4	k.MW	< 0,4	< 0,4
Eluat (nach S4)								
pH-Wert	-	40	0	6,6	7,2	7,3	7,8	8
Leitfähigkeit	μS/cm	40	0	420	675	658	763	810
Abdampfrückstand	mg/l	40	0	240	410	407	490	660
DOC	mg/l	40	0	3,8	10	10,7	14,1	30
Ammoniumstickstoff	mg/l	40	2	< 0,02	19	16	23	27
Kohlenwasserstoffe H53	mg/l	40	9	< 0,1	0,36	0,37	0,55	1,4
Fluorid	mg/l	40	13	< 0,15	0,22	0,31	0,62	0,8
Chlorid	mg/l	40	0	3,6	29	26	35	43
Sulfat	mg/l	40	0	53	113	118	160	173
Cyanid	mg/l	40	26	< 0,005	< 0,005	k.MW	0,011	0,014
Cyanid, leicht freisetzbar	mg/l	40	27	< 0,005	< 0,005	k.MW	0,009	0,013
Phenol-Index	mg/l	40	40	< 0,01	< 0,01	k.MW	< 0,01	< 0,01
AOX	mg/l	40	27	< 0,01	< 0,01	k.MW	0,024	0,042
Arsen	mg/l	40	0	0,0022	0,011	0,013	0,026	0,071
Blei	mg/l	40	40	< 0,001	< 0,001	k.MW	< 0,001	< 0,001
Cadmium	mg/l	40	34	<0,0003	< 0,0003	k.MW	0,0004	0,0008
Chrom	mg/l	40	20	< 0,001	0	k.MW	0,0016	0,0026
Kupfer	mg/l	40	15	< 0,001	0,0012	0,0024	0,0059	0,011
Nickel	mg/l	40	0	0,004	0,009	0,010	0,015	0,022
Quecksilber	mg/l	40	24	<0,0002	< 0,0002	k.MW	0,0005	0,0007
Zink	mg/l	40	3	< 0,01	0,022	0,033	0,079	0,12
Chrom-VI	mg/l	40	40	< 0,01	< 0,01	k.MW	< 0,025	< 0,025
Thallium	mg/l	5	5	< 0,001	< 0,001	k.MW	< 0,001	< 0,001

Anlage 6

Biotestuntersuchungen an Sedimentkernen 2004 und 2005

Zusammenstellung der durchgeführten Biotestuntersuchungen an Sedimentkernen aus der Elbe und dem Hamburger Hafen in 2004 und 2005 für die Umlagerung von Baggergut vor Neßsand. (Leuchtbakterientest mit *Vibrio fischeri*; Algentest mit *Desmodesmus subspicata*; Daphnientest mit *Daphnia magna*; Anwendung der Biotestbatterie zusätzlich am Porenwasser seit dem Sommer 2005).

Eluat (n. BfG 1:3)	Leucht- bakterientest	Algentest	Daphnientest
pT-Stufe	N=41	N=41	N=41
pT 0	26	5	24
pT 1	9	2	5
pT 2	4	14	12
pT 3	1	13	0
pT 4	0	5	0
pT 5	0	1	0
pT 6	1	1	0

Toxizitätsklasse				
Anzahl				
3				
0				
16				
13				
6				
1				
2				

Porenwasser pT-Stufe	N=16	N=16	N=16
pT 0	9	1	0
pT 1	4	3	7
pT 2	0	7	8
pT 3	2	5	1
pT 4	1	0	0
pT 5	0	0	
pT 6	0	0	

Sedimentkontakttest	Hemmung [%]			
Arthrobacter globiformis N=39	< 40 %	> 40 %		
Einsatz 1g FG (Anzahl)	38	1		
Einsatz 2g FG (Anzahl)	27	12		
Einsatz 3g FG (Anzahl)	14	25		