

# Umgang mit Baggergut aus dem Hamburger Hafen

Teilbericht Umlagerung von Baggergut nach Neßsand

Bericht über den Zeitraum 1.1. bis 31.12.2010

# <u>Inhalt</u>

| 1 | Rar  | ndbedingungen                             | 3   |
|---|------|-------------------------------------------|-----|
|   | 1.1  | Abflussgeschehen                          | 3   |
|   | 1.2  | Gewässergüte                              | 3   |
| 2 | Bag  | germengen                                 | 4   |
|   | 2.1  | Baggermengen nach Herkunft und Verbleib   | . 4 |
|   | 2.2  | Baggermassen                              | . 5 |
|   | 2.3  | Zeitliche Verteilung                      | 5   |
| 3 | Peil | ungen und Volumenvergleich                | 6   |
| 4 | Sch  | adstoffuntersuchungen                     | . 8 |
|   | 4.1  | Schadstoffbelastung der Sedimente         | . 8 |
|   | 4.2  | Ökotoxikologische Untersuchungen          | 9   |
|   | 4.3  | Sauerstoffzehrungspotenzial der Sedimente | 11  |
|   | 4.4  | Weitere Untersuchungen                    | 11  |
| 5 | Ber  | echnung der Schadstofffrachten            | 11  |

Anlagen

Hamburg Port Authority Hafeninfrastruktur / Wasser

Juni 2011



# Überblick

#### Veranlassung

Gemäß dem Handlungskonzept "Umlagerung von Baggergut aus dem Hamburger Hafen in der Stromelbe" wird hiermit der Bericht für das Kalenderjahr 2010 mit Angaben über die im Hamburger Hafen im Rahmen von Unterhaltungs- und Investitionsmaßnahmen angefallenen und nach Neßsand umgelagerten Baggergutmengen vorgelegt.

#### Mengen

Bei Unterhaltungsmaßnahmen fielen insgesamt 4,7 Mio. m³ Baggergut an. Den Landbehandlungsanlagen in Francop und Moorburg wurden insgesamt 0,6 Mio. m³ schlickiges Material zugeführt. Weitere rd. 0,4 Mio. m³ Sand aus der Stromelbe wurden in Francop und Moorburg für Bauzwecke verspült, 6.900 m³ Boden wurden entsorgt. Insgesamt wurden rund 2,5 Mio. m³ durch Verklappen bei Neßsand sowie mit dem hydraulischen Injektionsverfahren im Gewässer umgelagert.

Die gebaggerte Gesamtmenge des Jahres 2010 liegt im Vergleich zum Vorjahr in gleicher Größenordnung. Hierbei sind zwei Dinge zu berücksichtigen. Zum einen wurde die Kampagne "Umlagerung in die Nordsee" über den Jahreswechsel 2009/2010 durchgeführt, wäre jedoch eher dem Jahr 2009 zuzurechnen. Zum anderen haben aufgrund praktisch ganzjährig hoher Oberwasserführung die Umlagerungen nach der Sommerpause erst wieder im Dezember begonnen, was in den letzten 10 Jahren praktisch nicht vorgekommen ist.

#### **Umlagerung nach Neßsand**

Nach Neßsand wurden rund 2,4 Mio. m³ umgelagert. Eine maximale Wochenmenge von etwa 300.000 m³ fiel im März an. Begrenzungen der umlagerfähigen Sedimentmengen ergeben sich aus der Schadstoffbelastung des Sediments sowie aus zeitlichen Einschränkungen zum Schutz empfindlicher Gewässerorganismen und der Gewässergüte ("Zeitfenster"). Die vereinbarten Begrenzungen wurden eingehalten.

#### Verbringung in die Nordsee

Auf der Grundlage einer Einvernehmenserklärung des Landes Schleswig-Holstein aus dem Jahr 2008/2009 sowie einer Vereinbarung mit der Wasser- und Schifffahrtsverwaltung des Bundes wurden rd. 875.000 m³ Profilmaß in die Nordsee in die Nähe der Tonne E3 verbracht. Dies entsprechend einem Laderaumvolumen von 801.000 m³. Dazu liegt ein separater Monitoringbericht vor.

#### Frachten

Die Landverbringung von Baggergut im Rahmen der Wassertiefeninstandhaltung im Hamburger Hafen hatte auch im Jahr 2010 eine deutliche Schadstoffentlastung von Elbe und Nordsee zur Folge. Die Gesamtfrachten liegen im Vergleich unter denen des Jahres 2009, was auf die insgesamt niedrigere Gesamtmenge der Landbehandlung zurückzuführen ist.

#### **Ausblick**

Im Mittel der letzten Jahre beträgt die jährliche Gesamtbaggermenge etwa 4-5 Mio. m³. Neben Neßsand sind weitere Möglichkeiten für die Baggergutverbringung erforderlich. Aktuell wird das zwischen HPA und WSV des Bundes erarbeitete Strombau- und Sedimentmanagementkonzept einer Evaluierung durch internationale Experten unterzogen und soll auf dieser Grundlage in Abstimmung mit den Ländern weiterentwickelt werden. In diesem Zusammenhang ist auch über weitere Verbringstellen zu befinden.



# 1 Randbedingungen

#### 1.1 Abflussgeschehen

Die Abflussmenge der Elbe lag mit 983 m³/sec im Jahresmittel deutlich sowohl über dem langjährigen Mittel von 721 m³/sec wie über dem Vorjahresabfluss. Abflussspitzen um 1.500 m³/sec und mehr traten fast ganzjährig wiederkehrend auf, ebenso blieb eine ausgeprägte Niedrigwasserführung im Sommer aus. Dieses besondere Abflussgeschehen hat sich sehr positiv auf die zu baggernde Sedimentmenge ausgewirkt.

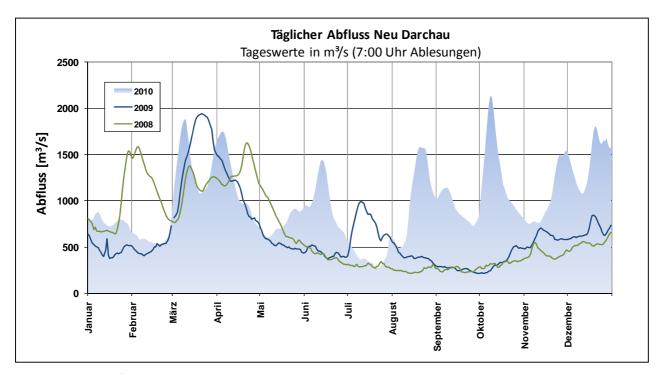



Abbildung 1: Abfluss am Pegel Neu-Darchau 2010

#### 1.2 Gewässergüte

An der der Umlagerstelle nahe gelegenen Messstelle Seemannshöft erfolgen kontinuierliche Messungen u. a. der Parameter Wassertemperatur und Sauerstoffgehalt. In Abbildung 2 sind die entsprechenden Tagesmittelwerte dargestellt.

Im Zeitraum vom 08.04. bis 18.10. betrug die Wassertemperatur mehr als 10 °C.

Die Sauerstoffgehalte lagen in der Zeit vom 05.07. bis 13.08. unterhalb von 6 mg  $O_2/I$  (insgesamt 40 Tage). An 10 Tagen lag der Sauerstoffgehalt unterhalb von 3 mg  $O_2/I$ . Der geringste gemessene Tagesmittelwert in 2010 beträgt 1,9 mg  $O_2/I$ . Die Sauerstoffsituation stellt sich damit günstiger als in den voran gegangenen Jahren dar.



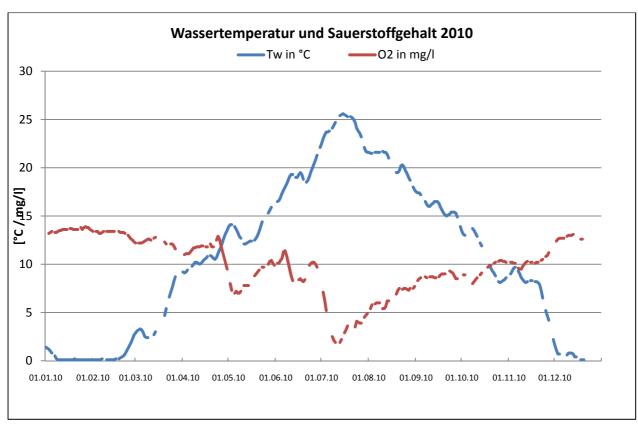



Abbildung 2: Wassertemperatur und Sauerstoffgehalte als Tagesmittelwerte in 2010 an der Dauermessstelle Seemannshöft

#### 2 Baggermengen

In der Anlage 1 befindet sich ein Hafenplan mit den Namen der Hafenbecken.

Die Ermittlung der gebaggerten Mengen erfolgt auf der Grundlage der je Transportvorgang (Hopperladung, Schute) dokumentierten Angaben (Datum, Herkunft, Verbleib, Ladungsgewicht, Volumen). Die Angaben erfolgen in m³ Profilmass und sind das Ergebnis einer empirisch entwickelten Näherungsberechnung aus den ermittelten Massenangaben. Folge dieser Berechnung können unterschiedliche Ergebnisse sein.

Beim hydraulischen Injektionsverfahren erfolgt die Mengenermittlung näherungsweise über die Einsatzzeiten und die mittlere Geräteleistung.

#### 2.1 <u>Baggermengen nach Herkunft und Verbleib</u>

Im Jahr 2010 wurden im Bereich des Hafens und der Hamburger Elbe rd. 4,7 Mio. m³ Sediment gebaggert. Tabelle 1 gibt einen Überblick der Baggermengen 2010 nach Verbleib. In Anlage 2 erfolgt ein detaillierter Überblick der gebaggerten Mengen, unterteilt nach Herkunft und Verbleib.



Tabelle 1: Baggermengen 2010 nach Verbleib (m<sup>3</sup>)

| Verbleib                                                                             | Summe                    |
|--------------------------------------------------------------------------------------|--------------------------|
| Umlagerung                                                                           |                          |
| <ul> <li>Sediment zur Umlagerung bei Neßsand</li> </ul>                              | 2.435.500                |
| <ul> <li>Sediment zur Umlagerung in die Nordsee bei Tonne E3</li> </ul>              | 876.300                  |
| <ul> <li>Sediment zur Umlagerung mit dem Wasserinjektionsverfahren</li> </ul>        | 85.500                   |
| Landbehandlung                                                                       |                          |
| <ul> <li>Mischboden zur Behandlung und Verwertung / Deponierung</li> </ul>           | 646.400                  |
| <ul> <li>Sand für Baumaßnahmen der Baggergutbehandlung und -unterbringung</li> </ul> | 408.200                  |
| <ul> <li>Mineralöl verunreinigte Böden zur Entsorgung</li> </ul>                     | 6.900                    |
| Gewässerunterhaltung und Herrichtung von Flächen                                     |                          |
| <ul> <li>Sand für Aufhöhungen</li> </ul>                                             | 149.200                  |
| <ul> <li>Boden zur Verklappung bei Strombaumaßnahmen</li> </ul>                      | 137.100                  |
| Summe                                                                                | 4.745.100 m <sup>3</sup> |

# 2.2 Baggermassen

Die Ermittlung der Massen ist u.a. für die Berechnung der Schadstofffrachten (Kapitel 5) erforderlich. Für die Ermittlung s. Vorbemerkung zu 2.

Tabelle 2: Gebaggerte Massen in 2010 (Tonnen Trockensubstanz)

| Verbleib                                          | Sand t TS | Schlick t TS |
|---------------------------------------------------|-----------|--------------|
| Umlagerung nach Neßsand                           | 148.800   | 785.000      |
| Umlagerung zur Tonne E3                           | 91.100    | 282.000      |
| Baggergut zur Behandlung Francop und Moorburg     | 215.900   | 188.600      |
| Sand für Baumaßnahmen der Baggergutbehandlung und |           |              |
| -unterbringung                                    | 602.100   | 17.000       |
| Sand für Aufhöhungen                              | 230.700   | 3.100        |
| Boden für Strombaumaßnahmen                       | 123.200   | 27.500       |
| Mineralöl verunreinigte Böden zur Entsorgung      | 2.200     | 2.200        |
| Summe                                             | 1.414.000 | 1.305.400    |

#### 2.3 Zeitliche Verteilung

Die Umlagerungen bei der Klappstelle Neßsand erfolgen auf Grundlage des mit der Umweltbehörde vereinbarten Handlungskonzepts "Umlagerung von Baggergut aus dem Hamburger Hafen in der Stromelbe". In den Bereich des Strom-Km 638 am südlichen Fahrwasserrand im Bereich des Tonnenstrichs vor der Landesgrenze wurden rund 2,4 Mio. m³ und damit 0,5 Mio. m³ weniger als im Vorjahr umgelagert. Die Umlagerungen bei Neßsand finden ausschließlich bei ablaufendem Wasser (Ebbstrom) statt.

Im Rahmen des Einvernehmens mit dem Land Schleswig-Holstein wurden im Januar und Februar rd. 876.300 m³ Baggergut im Profilmaß aus der Delegationsstrecke in die Nordsee zur Tonne E3 verbracht. Hierüber liegt ein separater Teilbericht vor.

Eine geringe Menge von knapp 85.500 m³ wurde in verschiedenen Hafenbereichen mit dem Wasserinjektionsgerät (WID) bewegt; davon entfiel der überwiegende Anteil auf die Außeneste.



arbeiten vorgenommen.

350.000

Verbringung Nordsee (E3)

Mischboden zur Landbehandlung

Umlagerung Neßsand

150.000

100.000

50.000

Ganzjährig wurden mit dem Gerät lediglich kleinere, örtlich begrenzte notwendige Nivellierungsarbeiten vorgenommen.

Abbildung 3: Wöchentliche Baggergutmengen "Umlagerung" innerhalb Hamburgs (Neßsand), sowie Verbringung in die Nordsee (Tonne E3) und "Behandlung" in Francop bzw. Moorburg

Jun

Jul

Aug

Sep

Okt

Nov

Dez

Mai

Die hohe Oberwasserführung der Elbe im zweiten Halbjahr 2010 führte zu einem geringeren Eintrieb von unterstrombürtigen, marinen Sedimenten in den Hafen. Hierdurch verringerte sich insgesamt die sich in den Baggergebieten ablagernde Sedimentmenge. Dies führte u.a. dazu, dass mit der Umlagerung von Baggergut vor Neßsand erst in der zweiten Dezemberhälfte 2010 begonnen werden musste. In den Vorjahren begannen die Umlagerungen Anfang November.

# 3 Peilungen und Volumenvergleich

Jan

Feb

Mrz

Apr

Im Zeitraum vom 19.04. bis zum 07.12.2010 wurden vier flächendeckende Peilungen im Umlagergebiet durchgeführt. Das eingesetzte Flächenlotsystem Reson-MCS 2000 ermöglicht eine Erfassung der Gewässersohle mit einer Punktdichte von unter 1 m in Fahrtrichtung und 1 m quer zur Fahrtrichtung des Peilschiffes. Mit der verwendeten Peilfrequenz von 210 kHz beträgt die Genauigkeit der kinematisch gemessenen Tiefen bei den vorhandenen Tiefenverhältnissen ± 0,2 m mit einer Sicherheitswahrscheinlichkeit P=95%. Die Ortung des Peilschiffes erfolgte per RTK-PDGPS mit einer Genauigkeit von ca. ± 0,1 m ebenfalls mit P=95%.

Aus den Messdaten (pro Peilung ca. 1,85 Mio. Geländepunkte) werden jeweils digitale Geländemodelle für ein Gebiet (siehe Abbildung 4) von ca. 4200 x 400 m² mit den originären Tiefendaten erstellt und anschließend untereinander verglichen. Die daraus ermittelten Mengenänderungen sind in Abbildung 5 dargestellt. Die Aufsummierung der Auf- und Abträge ergibt einen Abtrag von 92.500 m³, obwohl insgesamt in dieses Gebiet rd. 2,4 Mio. m³ Baggergut verbracht wurden. Dieser Abtrag ist auch vor dem Hintergrund der genannten Genauigkeit zu sehen.



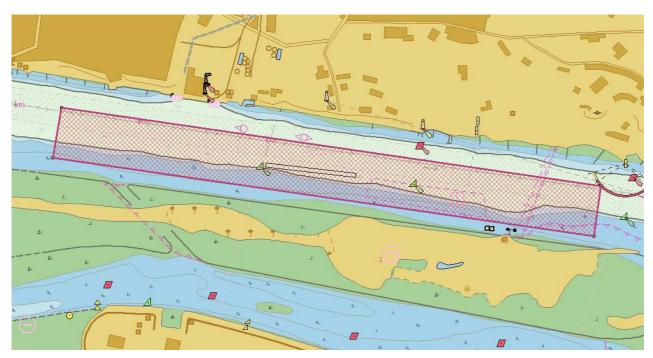



Abbildung 4: Elektronische Seekarte (BSH) mit rot dargestelltem Kontrollgebiet vor Neßsand. Auf dem südlichen Tonnenstrich ist das Klappfeld in schwarz markiert.

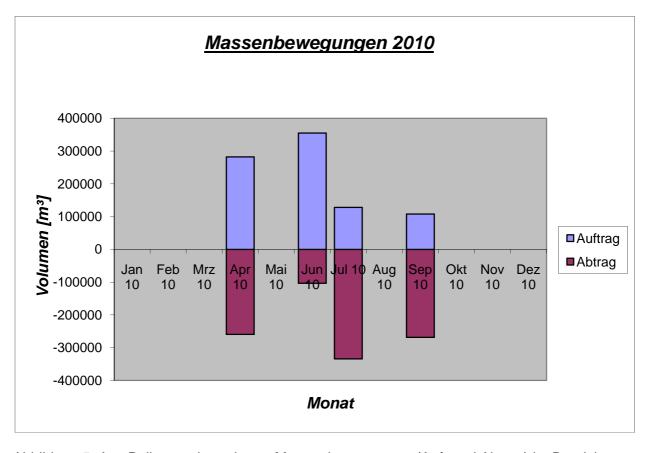



Abbildung 5: Aus Peilungen berechnete Mengenbewegungen (Auf- und Abtrag) im Bereich Neßsand im Jahr 2010



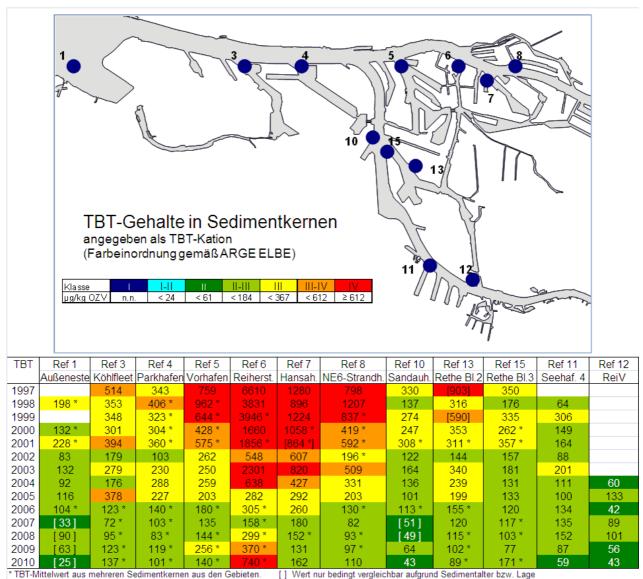
# 4 <u>Schadstoffuntersuchungen</u>

Schadstoffuntersuchungen erfolgen sowohl an Sedimenten als auch an dem aufbereiteten Baggergut:

- Zur Einschätzung der Entwicklung der Belastung der Sedimente werden in jedem Frühsommer an festgelegten Probennahmepunkten Oberflächenproben des frischen Sediments entnommen (Referenzbeprobung). Diese Proben geben ein Abbild der momentanen Belastungssituation wieder und lassen unter Berücksichtigung der Oberwasserführung eine Veränderung der Schadstoffbelastung über die Jahre erkennen.
  - Die Beprobung fand am 28. und 29.06.2010 statt. Die Ergebnisse der chemischen Untersuchungen der Referenzbeprobung 2010 sind in Anlage 3 dargestellt.
- Für die Bewertung von Umlagerungsmaßnahmen sind die Oberflächenproben nur begrenzt geeignet. In den grundsätzlich für Umlagerungen in Betracht kommenden Bereichen sowie in Bereichen mit besonderem Untersuchungsbedarf werden deshalb vorwiegend im Herbst und Winter Sedimentkerne über die Baggerschnitttiefe entnommen. Von den in der zweiten Jahreshälfte 2009 und in 2010 entnommenen Sedimentproben entfallen 43 Sedimentkerne auf vor Neßsand umgelagertes Baggergut. Die Ergebnisse der chemischen Untersuchungen sind in der Anlage 4 dargestellt, die Ergebnisse der ökotoxikologischen Untersuchungen aus 2010 sind in Anlage 5 abgebildet.
- Die wesentlichen Ergebnisse der Schadstoffuntersuchungen des an Land aufbereiteten Schlicks aus Entwässerungsfeldern sowie der METHA sind in Anlage 6 aufgeführt.

#### 4.1 Schadstoffbelastung der Sedimente

Sowohl die Untersuchungsergebnisse der Oberflächenproben als auch diejenigen der Sedimentkerne zeigen einen vergleichbar hohen Anteil der Kornfraktionen < 20 µm und insbesondere < 63 µm wie in den Vorjahren. Damit korrespondiert auch ein vergleichbarer Gehalt an Nährstoffen und einigen Schwermetallen. Bei den chlororganischen Schadstoffen ergibt sich ein Bild, das ein vergleichbares Belastungsniveau wie in den Vorjahren zeichnet. Bei diesen Stoffen verdecken größere Messunsicherheiten und vereinzelte hohe Messwerte die auch hier vorhandene Korngrößenabhängigkeit. Die Kohlenwasserstoffgehalte (Mineralöl) weisen ein ähnlich niedriges Niveau wie in den Vorjahren auf.


Die seit dem Anwendungsverbot von 2003 deutlich zurückgegangenen Einträge an zinnorganischen Verbindungen führen in den frisch abgelagerten Sedimenten weiterhin zu Anreicherungen. Bei einem Mittelwert von 122 μg/kg als OZK für das vor Neßsand umgelagerte Baggergut weisen die Analysenbefunde keinen weiteren Rückgang des Belastungsniveaus auf. Erstmals seit 2004 wurde im nördlichen Reiherstieg im Sommer und Herbst 2010 wieder eine mittlere Belastungshöhe des Sediments vorgefunden, die eine Umlagerung vor Neßsand von Baggergut aus diesem Bereich verhinderte. Aufgrund dieser Feststellung wurde die zuständige Behörde für Stadtentwicklung und Umwelt gebeten, sich für eine Verbesserung der Situation einzusetzen.

Das Belastungsmuster der Schwermetalle und Arsen im Sediment der Elbe hat sich in den vergangenen Jahren nur noch wenig verändert. Wie in den Vorjahren auch sind weiterhin anthropogen verursachte Anreicherungen vor allem von Cadmium, Zink, Kupfer und Quecksilber in den schwebstoffbürtigen Sedimenten festzustellen. Lang anhaltende Zeiträume mit hohen Abflussmengen führen dabei zu höheren Metallbefunden in den schwebstoffbürtigen Sedimenten als Phasen mit geringen Abflussmengen. Dementsprechend wurden in der zweiten Jahreshälfte 2010 etwas höhere Metallbefunde z.B. bei Cadmium vorgefunden.

Bei der Belastung der frischen, schwebstoffbürtigen Sedimente mit organischen Schadstoffen verhält es sich prinzipiell ähnlich. Große Veränderungen in der Belastungshöhe haben sich in den letzten Jahren nicht mehr vollzogen. Hohe Oberwassermengen führen bei einzelnen Stoffgruppen, wie z.B. den DDT-Verbindungen, zu Verschiebungen im Musterspektrum. So sind



höhere DDT-Werte nach hohen Oberwasserabflüssen beobachtbar, während die DDD- und DDE-Verbindungen geringere Konzentrationsänderungen aufweisen. Auf die Einhaltung der Kriterien für die Umlagerfähigkeit des Baggerguts aus den Hauptsedimentationsgebieten hat das Abflussgeschehen derzeit keinen limitierenden Einfluss. Die heranzuziehenden Kriterien zum Umgang mit Baggergut an der Elbe können weiterhin eingehalten werden, die vor Neßsand umgelagerten Sedimente erfüllten hinsichtlich ihrer Schadstoffbelastung ausnahmslos die Empfehlungen der ARGE ELBE.



**Abbildung 6:** Entwicklung der Tributylzinngehalte in Sedimentkernen der Jahre 1997-2010, eingestuft nach dem Bewertungsschema der ARGE ELBE (Angaben in µg OZK/kg TS).

# 4.2 Ökotoxikologische Untersuchungen

Um die ökotoxikologische Wirkung der Sedimente zu erfassen, wird eine Teilmenge der chemisch untersuchten Sedimente mit einer Biotestbatterie untersucht. Hierzu werden einerseits Algen, Bakterien und Daphnien den Eluaten und Porenwässern der Sedimente ausgesetzt (seit 2005, hergestellt nach Vorschrift der BfG) und andererseits Bakterien in einem Kontakttest mit dem Gesamtsediment zusammen gebracht. Die eintretenden Beeinträchtigungen der Organis-



men werden gemessen (s. Anlage 5).

Wie in den Vorjahren wurden auf diese Weise sowohl an den Oberflächensedimenten als auch an ausgewählten Kernproben ökotoxikologische Untersuchungen durchgeführt. Da es in Hamburg noch keinen Bewertungsmaßstab für diese Ergebnisse gibt, werden sie bisher nur unterstützend herangezogen.

Zur Beschreibung der ökotoxikologischen Wirkungen auf die unterschiedlichen Modellorganismen wurde das in der HABAK von der BfG vorgeschlagene Verfahren angewandt. Hierbei wird die von einer Umweltprobe ausgehende Toxizität durch das Verhältnis charakterisiert, wievielfach eine Probe im Verhältnis 1:2 verdünnt werden muss, damit sie nicht mehr signifikant toxisch wirkt. Angegeben wird dieses als pT-Wert (pT 0 (unverdünnt) bis pT6 (mindestens sechsmal verdünnt)). Dieses Verfahren kann nur bei den Tests angewandt werden, bei denen mit Verdünnungsreihen gearbeitet wird, also z. Zt. noch nicht für den Bakterienkontakttest mit Gesamtsediment

Den Sedimenten werden anschließend Toxizitätsklassen 0 – VI zugeordnet, sie werden durch den pT-Wert des empfindlichsten Organismus innerhalb der Testbatterie bestimmt.

Die Interpretation von Biotesten kann durch auftretende Wachstumsförderungen erschwert werden, da diese mögliche Toxizitäten überdecken und somit zu falsch negativen Befunden führen. Andererseits können aber auch natürliche Faktoren des Testsystems im Labor zu falsch positiven Befunden führen.

Im Rahmen der Referenzbeprobung 2010 wurden keine höheren Hemmwerte im Leuchtbakterientest an den Oberflächensedimenten vorgefunden. In den Jahren 2006, 2008 und 2009 traten mehrfach hohe Hemmungseffekte im Leuchtbakterientest auf, die in der Testserie der Referenzprobenahme 2010 nicht vorkamen. Ebenso verhielt es sich im Algentest, hier wiesen die Ergebnisse in den Vorjahren immer Hemmungen bis zur Verdünnungsstufe G16 und darüber auf. Im Sommer 2010 konnte keine derartige Verteilung von Hemmeffekten im Algentest beobachtet werden, im Maximum traten Hemmwerte bis zu Verdünnungsstufe G4 auf. Ursachen für das unregelmäßige Auftreten dieser Hemmungseffekte können nicht angeführt werden. Beziehungen zu äußeren Faktoren, wie dem Oberwasserabfluss oder Änderungen im Sedimentinventar, sind nicht erkennbar, so dass weiterhin keine weitergehenden Schlüsse aus den Testbefunden gezogen werden können.

Die Ergebnisse der ökotoxikologischen Untersuchungen an den Sedimentkernen aus den Hauptbaggerbereichen zeigen ein ähnlich gleichmäßiges Bild. Der in den Vorjahren oftmals durch hohe Hemmwerte vor allem am Porenwasser aufgefallene Algenwachstumshemmtest zeigte bei den Untersuchungen im Herbst 2010 keine hohen Hemmwirkungen; nur in einem Fall wurde eine Hemmung entsprechend pT 5 erreicht. Der Großteil der Ergebnisse des Algentests im Eluat und im Porenwasser fällt in die Verdünnungsstufen pT 1 und 2 und weist damit auf ein geringeres ökotoxisches Potential des Sediments hin.

Im Daphnientest und im Leuchtbakterientest sind keine besonderen Auffälligkeiten zu beobachten gewesen. Die Testbefunde konzentrieren sich auf die Verdünnungsstufen pT 0 im Leuchtbakterientest und pT 0 und 1 im Daphnientest.

Der Sedimentkontakttest mit Arthrobacter globiformis wurde nicht weiter durchgeführt, da es weiterhin keine geeignete Bewertungsmethodik für diesen Test gibt.

Ob die verringerten Schwankungsbreiten der Testergebnisse und besseren Reproduzierbarkeiten auf die begonnenen Maßnahmen zur Qualitätsverbesserung der Testdurchführungen und Vereinheitlichung von Randbedingungen der Testabläufe zurückzuführen sind, ist derzeit noch nicht ableitbar. Die Arbeiten hierfür werden im Zusammenwirken mit der BfG weitergeführt.



# 4.3 Sauerstoffzehrungspotenzial der Sedimente.

Bei der Umlagerung von Baggergut kann es durch die chemische und biologische Oxidation reduzierter Sedimente zu einer Sauerstoffzehrung im Gewässer kommen. Die Messung des Sauerstoffzehrungspotenzials von Sedimenten ermöglicht es, den Einfluss von Umlagerungsmaßnahmen auf die Gewässergüte abzuschätzen.

Das chemische Sauerstoffzehrungspotenzial wurde im Zeitraum 2009/10 an 36 Sedimentkernen untersucht. Die Sauerstoffzehrung nach 180 Minuten liegt bei einem Mittelwert von 1,1 g  $O_2$ /kg TS bei einer Spanne von 0,2 bis 1,8 g  $O_2$ /kg TS. Die Sauerstoffzehrungswerte für das in 2010 verbrachte Baggergut liegen damit in der gleichen Größenordnung wie die Befunde aus den Vorjahren. Bei der vor Neßsand angewandten Umlagerungsstrategie hat die Sauerstoffzehrung der Sedimente keinen erkennbaren Einfluss auf die Gewässergüte.

# 4.4 Weitere Untersuchungen

Weitere Untersuchungen wurden in den Baggerbereichen und im Einbringbereich in 2010 nicht durchgeführt.

# 5 Berechnung der Schadstofffrachten

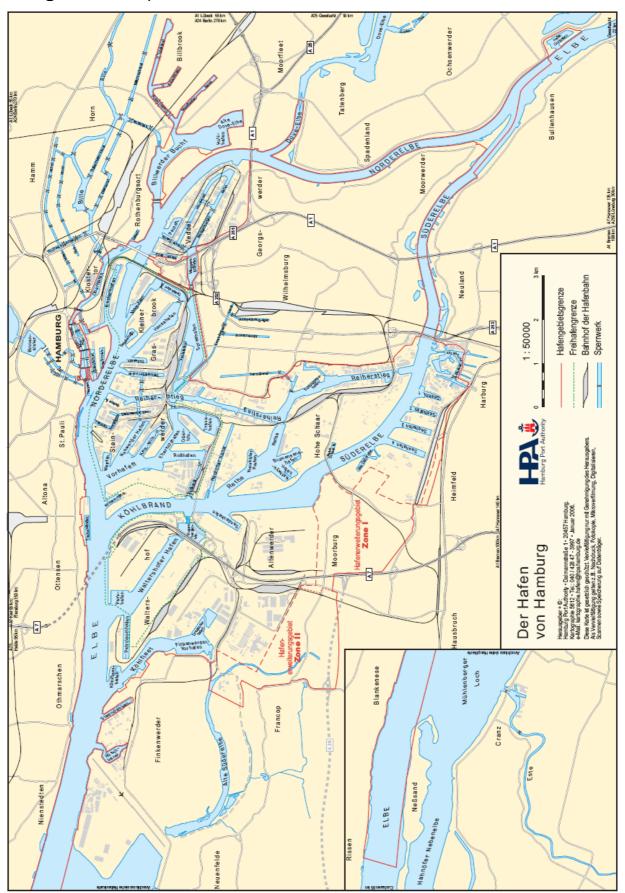
Die Baggerungen im Hamburger Hafen erfolgen zur Sicherung ausreichender Wassertiefen für die Schifffahrt und damit zur Gewährleistung der Funktionsfähigkeit des Hafens. Durch die Landbehandlung (Verwertung und Beseitigung) schadstoffbelasteter Sedimente entnimmt Hamburg einen Teil der Schadstofffracht der Elbe und trägt damit auch zu einer Entlastung der Nordsee bei.

Bisher wurden von der Wassergütestelle Elbe die Elbefrachten an der Dauermessstelle Schnackenburg ermittelt. Nicht berücksichtigt werden hier die zwischen Schnackenburg und Hamburg hinzukommenden Schadstofffrachten oder auch Frachten, die sich mit den Schwebstoffen in diesem Bereich ablagern bzw. remobilisiert werden. Bisher liegen keine Daten für das Jahr 2010 vor.

| Tabelle 3: Berechnete bzw.   | ahneschätzte Schadstofff | rachten 2010      |
|------------------------------|--------------------------|-------------------|
| Tabelle 3. Detectifiete bzw. | abueschaizle Schausluni  | I a chile il 2010 |

| Schadstoff      | Einheit  | Land-<br>verbringung | Umlagerung<br>Neßsand | Verbringung<br>Tonne E3 | Elbe 2009<br>Schnackenburg |
|-----------------|----------|----------------------|-----------------------|-------------------------|----------------------------|
| Arsen           | t/a      | 8,8                  | 18,7                  | 4,8                     | 70                         |
| Blei            | t/a      | 21,7                 | 41,1                  | 10,6                    | 49                         |
| Cadmium         | t/a      | 1,2                  | 1,7                   | 0,4                     | 2,4                        |
| Kupfer          | t/a      | 39,2                 | 42,0                  | 10,4                    | 82                         |
| Nickel          | t/a      | 9,8                  | 20,5                  | 5,4                     | 63                         |
| Quecksilber     | t/a      | 0,9                  | 0,9                   | 0,2                     | 0,77                       |
| Zink            | t/a      | 199,6                | 314                   | 75,2                    | 800                        |
| Mono-Butylzinn  | kg Sn /a | 20,4                 | 37,9                  | 6,8                     | k.A.                       |
| Di-Butylzinn    | kg Sn /a | 18,7                 | 13,8                  | 3,8                     | k.A.                       |
| Tri-Butylzinn   | kg Sn /a | 72,8                 | 69,4                  | 12,9                    | k.A.                       |
| Tetra-Butylzinn | kg Sn /a | 16,9                 | 7,3                   | 1,8                     | k.A.                       |




Aufgrund methodischer Probleme erfolgt die Berechnung lediglich für Schwermetalle, Arsen und zinnorganische Verbindungen. Die Frachtberechnungen sind, wie auch die Massenermittlung, mit methodischen Unsicherheiten behaftet. Die Angabe der Jahresfracht für die Messstation Schnackenburg bezieht sich auf Messungen an Gesamtwasserproben bzw. zeitgleiche/-nahe Probenahme von Oberflächenwasser und Schwebstoff, während die Angaben für die Verbringung an Land und im Gewässer sich allein auf Feststoffanalysen beziehen.

Die für die Landbehandlung entnommenen Schadstofffrachten befinden sich auf einem niedrigeren Niveau als im Jahr 2009. Dies ist auf die geringeren Mengen zurückzuführen, die in die Landbehandlung gebracht wurden.

Die bei Neßsand umgelagerten Frachten sind kursiv dargestellt; sie sind nicht realistisch. Auf Grund des bei der dortigen Verbringung erfolgenden Rücktransports von Teilmengen in den Hafen werden dabei "dieselben Frachten mehrfach umgelagert". Insofern dienen die Angaben nur einer Abschätzung.



# Anlage 1 / Hafenplan





Anlage 2
Gebaggerte Mengen 2010 in m<sup>3</sup> Profilmaß BASSIN, unterteilt nach Herkunft und Verbleib

WID = Wasserinjektionsverfahren - Mengen errechnet aus Leistungsstunden

| Umlagerung         |                            |        |                             | Landbehandlung         |                                                                                    |                         | erhaltung und<br>von Flächen |                                                        |         |
|--------------------|----------------------------|--------|-----------------------------|------------------------|------------------------------------------------------------------------------------|-------------------------|------------------------------|--------------------------------------------------------|---------|
| Herkunft           | Sediment zur<br>Umlagerung | WID    | Verbringung<br>Nordsee (E3) | Mibo zur<br>Behandlung | Sand für Baumaß-<br>nahmen der<br>Baggergutbehand-<br>lung und -unter-<br>bringung | Boden zur<br>Entsorgung | Sand für<br>Aufhöhungen      | Boden zur<br>Verklappung<br>bei Strombau-<br>maßnahmen | Summe   |
| Museumshafen       |                            |        |                             |                        |                                                                                    |                         |                              |                                                        |         |
| Ovelgonne          |                            | 9.500  |                             |                        |                                                                                    |                         |                              | 900                                                    | 10.400  |
| Norderelbe (6-7)   | 105.100                    |        | 446.500                     | 48.700                 | 34.800                                                                             |                         |                              |                                                        | 635.200 |
| Suederelbe         | 300.200                    |        | 237.100                     | 100                    | 229.500                                                                            |                         | 65.100                       |                                                        | 832.000 |
| Koehlbrand         | 3.000                      |        | 192.700                     | 400                    | 7.600                                                                              |                         |                              | 57.100                                                 | 260.800 |
| Unterelbe          | 2.600                      |        |                             |                        | 103.900                                                                            |                         | 84.100                       |                                                        | 190.600 |
| Aussen - Este      |                            | 70.500 |                             |                        |                                                                                    |                         |                              |                                                        | 70.500  |
| Muehlenberger Loch |                            |        |                             |                        | 700                                                                                |                         |                              |                                                        | 700     |
| Steendiekkanal     |                            | 3.000  |                             |                        |                                                                                    |                         |                              |                                                        | 3.000   |
| Rueschkanal        |                            | 2.500  |                             |                        |                                                                                    |                         |                              |                                                        | 2.500   |
| Noerdl.Reiherstieg | 37.700                     |        |                             | 27.700                 |                                                                                    |                         |                              |                                                        | 65.400  |
| Mittl. Reiherstieg |                            |        |                             | 600                    |                                                                                    |                         |                              |                                                        | 600     |
| Suedl.Reiherstieg  | 4.900                      |        |                             |                        |                                                                                    |                         |                              |                                                        | 4.900   |
| Rethe              | 314.200                    |        |                             | 18.800                 |                                                                                    | 5.500                   |                              |                                                        | 338.500 |
| Kattwykhafen       |                            |        |                             | 21.600                 |                                                                                    |                         |                              |                                                        | 21.600  |
| Blumensandhafen    |                            |        |                             | 24.200                 |                                                                                    |                         |                              |                                                        | 24.200  |
| Neuhoefer Hafen    | 22.700                     |        |                             | 300                    |                                                                                    |                         |                              |                                                        | 23.000  |
| Hansahafen         | 169.800                    |        |                             |                        |                                                                                    |                         |                              |                                                        | 169.800 |
| Suedwesthafen      | 51.300                     |        |                             |                        |                                                                                    |                         |                              |                                                        | 51.300  |
| Steinwerder Hafen  |                            |        |                             | 36.800                 |                                                                                    |                         |                              |                                                        | 36.800  |
| Grasbrookhafen     |                            |        |                             | 19.200                 |                                                                                    |                         |                              |                                                        | 19.200  |

|                      |                            | Umlagerung                                         | J                           |                        | Landbehandlung                                                                     |                         |                         |                                                        |           |
|----------------------|----------------------------|----------------------------------------------------|-----------------------------|------------------------|------------------------------------------------------------------------------------|-------------------------|-------------------------|--------------------------------------------------------|-----------|
| Herkunft             | Sediment zur<br>Umlagerung | WID<br>(Errechnet<br>aus<br>Leistungs-<br>stunden) | Verbringung<br>Nordsee (E3) | Mibo zur<br>Behandlung | Sand für Baumaß-<br>nahmen der<br>Baggergutbehand-<br>lung und -unter-<br>bringung | Boden zur<br>Entsorgung | Sand für<br>Aufhöhungen | Boden zur<br>Verklappung<br>bei Strombau-<br>maßnahmen | Summe     |
| Elbufer              | 81.000                     |                                                    |                             | 20.700                 |                                                                                    |                         |                         |                                                        | 101.700   |
| Kuhwerder Vorhafen   | 231.300                    |                                                    |                             | 3.300                  | 2.500                                                                              |                         |                         |                                                        | 237.100   |
| Ellerholzhafen       | 81.400                     |                                                    |                             | 28.000                 | 28.600                                                                             | 400                     |                         | 67.100                                                 | 205.500   |
| Rosshafen            |                            |                                                    |                             | 7.900                  |                                                                                    |                         |                         |                                                        | 7.900     |
| Sandauhafen          |                            |                                                    |                             | 8.600                  |                                                                                    |                         |                         |                                                        | 8.600     |
| Parkhafen            | 482.700                    |                                                    |                             |                        |                                                                                    |                         |                         |                                                        | 482.700   |
| Waltershofer Hafen   |                            |                                                    |                             | 4.500                  | 400                                                                                |                         |                         |                                                        | 4.900     |
| Finkenwerd.Vorhafen  | 138.100                    |                                                    |                             |                        |                                                                                    |                         |                         |                                                        | 138.100   |
| Petroleumhafen       | 38.200                     |                                                    |                             |                        |                                                                                    |                         |                         |                                                        | 38.200    |
| Koehlfleet           | 371.300                    |                                                    |                             |                        |                                                                                    |                         |                         |                                                        | 371.300   |
| Koehlfleethafen      |                            |                                                    |                             | 46.200                 |                                                                                    |                         |                         | 12.000                                                 | 58.200    |
| Seehafen 1           |                            |                                                    |                             | 3.000                  |                                                                                    |                         |                         |                                                        | 3.000     |
| Seehafen 4           |                            |                                                    |                             | 1.400                  |                                                                                    | 300                     |                         |                                                        | 1.700     |
| Reiherstieg Vorhafen |                            |                                                    |                             | 2.700                  |                                                                                    |                         |                         |                                                        | 2.700     |
| Billwerder Bucht     |                            |                                                    |                             | 62.500                 |                                                                                    |                         |                         |                                                        | 62.500    |
| Innere Durchfahrt    |                            |                                                    |                             | 57.100                 | 200                                                                                |                         |                         |                                                        | 57.300    |
| Fleete/Speicher      |                            |                                                    |                             | 9.700                  |                                                                                    |                         |                         |                                                        | 9.700     |
| MueggHovek.westl.T.  |                            |                                                    |                             | 3.900                  |                                                                                    |                         |                         |                                                        | 3.900     |
| Moldauhafen          |                            |                                                    |                             | 20.500                 |                                                                                    |                         |                         |                                                        | 20.500    |
| Saalehafen           |                            |                                                    |                             | 63.500                 |                                                                                    |                         |                         |                                                        | 63.500    |
| Spreehafen           |                            |                                                    |                             | 99.600                 |                                                                                    | 700                     |                         |                                                        | 100.300   |
| Steinwerder Kanäle   |                            |                                                    |                             | 4.900                  |                                                                                    |                         |                         |                                                        | 4.900     |
| SUMME                | 2.435.300                  | 85.500                                             | 876.300                     | 646.400                | 408.200                                                                            | 6.900                   | 149.200                 | 137.000                                                | 4.745.100 |

Anlage 3
Statistische Auswertung der Referenzproben 2010

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        | N D0                                                                                           |       |        | B8*** 1 ** | 22.5     |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|------------------------------------------------------------------------------------------------|-------|--------|------------|----------|------|
| Double of the state of the stat | Find at  | Anzahl | N <bg< th=""><th>Min</th><th>Median</th><th>Mittelwert</th><th>90.Perz.</th><th>Max</th></bg<> | Min   | Median | Mittelwert | 90.Perz. | Max  |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Einheit  | 4.4    |                                                                                                |       |        | 40.5       | 540      | 00.0 |
| Trockensubstanz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gew.% OS | 14     | 0                                                                                              | 22,2  | 39,2   | 40,5       | 54,6     | 60,3 |
| TOC (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gew.% TS | 14     | 0                                                                                              | 1,1   | 3,1    | 3,2        | 5,3      | 6,2  |
| Siebanalyse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |        | _                                                                                              |       |        |            |          |      |
| Fraktion < 20 µm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gew% TS  | 14     | 0                                                                                              | 7,4   | 23,3   | 28         | 51,1     | 54,8 |
| Fraktion 20 - 63 µm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gew% TS  | 14     | 0                                                                                              | 18,2  | 29,8   | 29,6       | 39,3     | 41,2 |
| Fraktion 63 - 100 µm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gew% TS  | 14     | 0                                                                                              | 4,3   | 28,1   | 27,8       | 44,1     | 63   |
| Fraktion 100 - 200 µm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gew% TS  | 14     | 0                                                                                              | 1,6   | 10,1   | 11,4       | 20,6     | 31,8 |
| Fraktion 200 - 630 µm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gew% TS  | 14     | 0                                                                                              | 0,2   | 1,2    | 2,5        | 3,3      | 16,6 |
| Fraktion 630 - 1000 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gew% TS  | 14     | 0                                                                                              | 0,1   | 0,3    | 0,4        | 0,7      | 1,1  |
| Fraktion 1000-2000 µm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gew% TS  | 14     | 1                                                                                              | <0,1  | 0,2    | 0,3        | 0,5      | 0,7  |
| Fraktion > 2000 µm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gew% TS  | 14     | 9                                                                                              | <0,1  | <0,1   | k.MW       | 0,4      | 0,8  |
| Fraktion < 63 µm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gew% TS  | 14     | 0                                                                                              | 27,2  | 53,6   | 57,6       | 87,8     | 89,9 |
| Fraktion < 100 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gew% TS  | 14     | 0                                                                                              | 65,5  | 88     | 85,4       | 96,9     | 97,5 |
| Summenparameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |                                                                                                |       |        |            |          |      |
| Stickstoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/kg TS | 14     | 0                                                                                              | 810   | 3740   | 3691       | 6659     | 7380 |
| Phosphor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/kg TS | 14     | 0                                                                                              | 610   | 1400   | 1636       | 2770     | 3100 |
| Schwefel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/kg TS | 14     | 0                                                                                              | 1600  | 2200   | 2807       | 4170     | 4300 |
| Metalle aus der Fraktion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <20 μm   |        |                                                                                                |       |        |            |          |      |
| Arsen <20 µm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/kg TS | 14     | 0                                                                                              | 28    | 38     | 38         | 46       | 48   |
| Blei <20 µm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg TS | 14     | 0                                                                                              | 95    | 118    | 117        | 127      | 131  |
| Cadmium <20 µm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/kg TS | 14     | 0                                                                                              | 3,2   | 6      | 5,9        | 7,1      | 8,1  |
| Chrom <20 µm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/kg TS | 14     | 0                                                                                              | 46    | 61     | 65         | 91       | 98   |
| Kupfer <20 µm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/kg TS | 14     | 0                                                                                              | 88    | 115    | 115        | 141      | 180  |
| Nickel <20 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/kg TS | 14     | 0                                                                                              | 34    | 42     | 43         | 52       | 55   |
| Quecksilber <20 µm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/kg TS | 14     | 0                                                                                              | 1,4   | 1,9    | 2          | 2,3      | 2,8  |
| Zink <20 µm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg TS | 14     | 0                                                                                              | 734   | 1025   | 1027       | 1180     | 1340 |
| Mineralölkohlenwasserst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |        |                                                                                                |       |        |            |          |      |
| Mineralöl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/kg TS | 14     | 1                                                                                              | <20   | 74     | 99         | 212      | 240  |
| Mineralöl C10-C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg TS | 14     | 5                                                                                              | <10   | 12     | 15         | 25       | 34   |
| Mineralöl C21-C40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg TS | 14     | 0                                                                                              | 13    | 64     | 85         | 186      | 220  |
| Polycyclische Aromaten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | g/g      |        | •                                                                                              |       | •      |            |          |      |
| Naphthalin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/kg TS | 14     | 0                                                                                              | 0,02  | 0,07   | 0,07       | 0,13     | 0,16 |
| Acenaphtylen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/kg TS | 14     | 1                                                                                              | <0,01 | 0,02   | 0,02       | 0,03     | 0,03 |
| Acenaphthen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg TS | 14     | 3                                                                                              | <0,01 | 0,01   | 0,02       | 0,03     | 0,03 |
| Fluoren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/kg TS | 14     | 1                                                                                              | <0,01 | 0,03   | 0,03       | 0,05     | 0,07 |
| Phenanthren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg TS | 14     | 0                                                                                              | 0,02  | 0,05   | 0,06       | 0,10     | 0,10 |
| Anthracen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/kg TS | 14     | 0                                                                                              | 0,07  | 0,17   | 0,19       | 0,33     | 0,36 |
| Fluoranthen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg TS | 14     | 0                                                                                              | 0,14  | 0,17   | 0,13       | 0,65     | 0,69 |
| Pyren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg TS | 14     | 0                                                                                              | 0,14  | 0,33   | 0,37       | 0,52     | 0,58 |
| Benz(a)anthracen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg TS | 14     | 0                                                                                              | 0,11  | 0,27   | 0,31       | 0,32     | 0,34 |
| Chrysen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/kg TS | 14     | 0                                                                                              | 0,07  | 0,16   | 0,18       | 0,32     | 0,34 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 14     |                                                                                                |       |        |            |          |      |
| Benzo(b)fluoranthen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/kg TS | 14     | 0                                                                                              | 0,07  | 0,18   | 0,21       | 0,38     | 0,44 |
| Benzo(k)fluoranthen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/kg TS | 14     | 0                                                                                              | 0,04  | 0,09   | 0,10       | 0,17     | 0,18 |
| Benzo(a)pyren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/kg TS |        | 0                                                                                              | 0,07  | 0,16   | 0,18       | 0,31     | 0,33 |
| Dibenz(ah)anthracen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/kg TS | 14     | 1                                                                                              | <0,01 | 0,02   | 0,02       | 0,04     | 0,04 |
| Benzo(ghi)perylen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg TS | 14     | 0                                                                                              | 0,05  | 0,12   | 0,13       | 0,22     | 0,25 |
| Indeno(1.2.3-cd)pyren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg TS | 14     | 0                                                                                              | 0,05  | 0,13   | 0,14       | 0,23     | 0,25 |
| PAK Summe 6 g.BG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg TS | 14     | 0                                                                                              | 0,41  | 0,97   | 1,13       | 1,97     | 2,09 |
| PAK Summe 16 g.BG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg TS | 14     | 0                                                                                              | 0,81  | 1,92   | 2,21       | 3,81     | 4,12 |
| Polychlorierte Biphenyle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |        |                                                                                                |       |        |            |          |      |
| PCB 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μg/kg TS | 14     | 0                                                                                              | 0,21  | 0,9    | 0,9        | 1,7      | 1,9  |
| I OD 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | µg/kg 13 | 14     | U                                                                                              | U,Z I | υ,σ    | υ,σ        | 1,7      | 1,5  |

|                        |              | Anzahl | N <bg< th=""><th>Min</th><th>Median</th><th>Mittelwert</th><th>90.Perz.</th><th>Max</th></bg<> | Min  | Median | Mittelwert | 90.Perz. | Max  |
|------------------------|--------------|--------|------------------------------------------------------------------------------------------------|------|--------|------------|----------|------|
| Parameter              | Einheit      |        |                                                                                                |      |        |            |          |      |
| PCB 52                 | μg/kg TS     | 14     | 0                                                                                              | 0,3  | 0,9    | 1          | 1,8      | 1,9  |
| PCB 101                | μg/kg TS     | 14     | 0                                                                                              | 0,58 | 1,7    | 1,8        | 3        | 3,1  |
| PCB 118                | μg/kg TS     | 14     | 0                                                                                              | 0,34 | 0,9    | 1,1        | 1,8      | 2    |
| PCB 138                | μg/kg TS     | 14     | 0                                                                                              | 1,1  | 2,8    | 3          | 5,2      | 5,6  |
| PCB 153                | μg/kg TS     | 14     | 0                                                                                              | 1,5  | 3,7    | 4,3        | 7,6      | 8,5  |
| PCB 180                | μg/kg TS     | 14     | 0                                                                                              | 1,1  | 2,8    | 3,1        | 5,4      | 6,2  |
| PCB Summe 6 g.BG       | μg/kg TS     | 14     | 0                                                                                              | 4,79 | 13     | 14         | 25       | 27   |
| PCB Summe 7 g.BG       | μg/kg TS     | 14     | 0                                                                                              | 5,13 | 14     | 15         | 27       | 28   |
| Hexachlorcyclohexane   |              |        |                                                                                                |      |        |            |          |      |
| alpha-HCH              | μg/kg TS     | 14     | 0                                                                                              | 0,23 | 0,7    | 0,9        | 1,6      | 2    |
| beta-HCH               | μg/kg TS     | 14     | 0                                                                                              | 0,47 | 1,8    | 2,4        | 4,3      | 6    |
| gamma-HCH              | μg/kg TS     | 14     | 0                                                                                              | 0,07 | 0,2    | 0,2        | 0,4      | 0,48 |
| delta-HCH              | μg/kg TS     | 14     | 0                                                                                              | 0,21 | 0,7    | 0,7        | 1,2      | 1,5  |
| epsilon-HCH            | μg/kg TS     | 14     | 4                                                                                              | <0,1 | 0,1    | 0,2        | 0,3      | 0,44 |
| DDT + Metabolite       |              |        |                                                                                                |      |        |            |          |      |
| o,p'-DDE               | μg/kg TS     | 14     | 0                                                                                              | 0,1  | 0,4    | 0,4        | 0,7      | 0,83 |
| p,p'-DDE               | μg/kg TS     | 14     | 0                                                                                              | 1    | 4,7    | 5          | 9        | 11   |
| o,p'-DDD               | μg/kg TS     | 14     | 0                                                                                              | 1,1  | 4,7    | 5,3        | 9,5      | 12   |
| p,p'-DDD               | μg/kg TS     | 14     | 0                                                                                              | 3,2  | 14     | 14         | 24       | 30   |
| o,p'-DDT               | μg/kg TS     | 14     | 0                                                                                              | 0,14 | 0,6    | 1          | 2        | 3,2  |
| p,p'-DDT               | μg/kg TS     | 14     | 0                                                                                              | 0,3  | 5,1    | 12         | 30       | 36   |
| DDT-Summe              | μg/kg TS     | 14     | 0                                                                                              | 5,84 | 30     | 37         | 68       | 89   |
| Chlorbenzole           |              |        |                                                                                                |      |        |            |          |      |
| Pentachlorbenzol       | μg/kg TS     | 14     | 0                                                                                              | 0,31 | 1,4    | 1,6        | 3        | 3,4  |
| Hexachlorbenzol        | μg/kg TS     | 14     | 0                                                                                              | 1,8  | 8,7    | 11,6       | 22,2     | 32   |
| Organozinnverbindungen |              |        |                                                                                                |      |        |            |          |      |
| Monobutylzinn          | μg OZK/kg TS | 14     | 0                                                                                              | 11   | 28     | 36         | 62       | 80   |
| Dibutylzinn            | μg OZK/kg TS | 14     | 0                                                                                              | 5,2  | 16     | 23         | 36       | 78   |
| Tributylzinn           | μg OZK/kg TS | 14     | 0                                                                                              | 12   | 56     | 123        | 110      | 929  |
| Tetrabutylzinn         | μg OZK/kg TS | 14     | 0                                                                                              | 2,6  | 18     | 19         | 30       | 40   |
| Monooctylzinn          | μg OZK/kg TS | 14     | 1                                                                                              | <1   | 3,8    | 4,6        | 9,3      | 11   |
| Dioctylzinn            | μg OZK/kg TS | 14     | 1                                                                                              | <1   | 3,4    | 3,9        | 7,9      | 8,8  |
| Triphenylzinn          | μg OZK/kg TS | 14     | 14                                                                                             | <1   | <1     | k.MW       | <1       | <1   |
| Tricyclohexylzinn      | μg OZK/kg TS | 14     | 14                                                                                             | <1   | <1     | k.MW       | <1       | <1   |

Anlage 4
Statistische Auswertung der Kernproben des vor Neßsand umgelagerten Materials (Sedimentkernproben aus 2009 und 2010).

|                         |            | Anzahl   | n <bg< th=""><th>Min</th><th>Median</th><th>Mittel</th><th>90.P</th><th>Max</th></bg<>       | Min    | Median | Mittel | 90.P    | Max   |
|-------------------------|------------|----------|----------------------------------------------------------------------------------------------|--------|--------|--------|---------|-------|
| Parameter               | Einheit    | Alizalli | II <dg< th=""><th>IVIIII</th><th>Wedian</th><th>Millei</th><th>90.P</th><th>IVIAX</th></dg<> | IVIIII | Wedian | Millei | 90.P    | IVIAX |
| Trockensubstanz         | Gew.% OS   | 41       | 0                                                                                            | 31,1   | 44,2   | 44,2   | 51,7    | 75,2  |
| TOC (C)                 | Gew.% TS   | 43       | 0                                                                                            | 0,44   | 3,1    | 3,2    | 4,4     | 5,1   |
| Siebanalyse             | COW. 70 TC | 10       | Ū                                                                                            | 0,11   | 0, 1   | 0,2    | 1, 1    | 0,1   |
| Fraktion < 20 µm        | Gew% TS    | 43       | 0                                                                                            | 9,8    | 47,4   | 45,9   | 63,6    | 69,5  |
| Fraktion 20 - 63 µm     | Gew% TS    | 43       | 0                                                                                            | 4,2    | 24,8   | 23,5   | 32,6    | 36,3  |
| Fraktion 63 - 100 µm    | Gew% TS    | 43       | 0                                                                                            | 2,5    | 12,7   | 14,9   | 27,6    | 37    |
| Fraktion 100 - 200 µm   | Gew% TS    | 43       | 0                                                                                            | 1,2    | 5,8    | 7,6    | 15,6    | 28,3  |
| Fraktion 200 - 630 µm   | Gew% TS    | 43       | 0                                                                                            | 0,1    | 4,2    | 6,3    | 13,6    | 49,6  |
| Fraktion 630 - 1000µm   | Gew% TS    | 43       |                                                                                              | <0,1   | 0,4    | 1      | 2,4     | 8,5   |
| Fraktion 1000-2000µm    | Gew% TS    | 43       |                                                                                              | <0,1   | 0,1    | 0,6    | 1,3     | 7,8   |
| Fraktion > 2000 µm      | Gew% TS    | 43       |                                                                                              |        | <0,1   | k.MW   | 0,7     | 6,2   |
| Fraktion < 63 µm        | Gew% TS    | 43       | 0                                                                                            | 14,1   | 70     | 69,4   | 87,4    | 93    |
| Fraktion < 100 µm       | Gew% TS    | 43       | 0                                                                                            | 28,4   | 88,4   | 84,2   | 97,2    | 98,4  |
| Summenparameter         |            |          |                                                                                              | -,     | ,      | - ,    | - ,     | ,     |
| Stickstoff              | mg/kg TS   | 39       | 0                                                                                            | 490    | 3680   | 3779   | 5208    | 6480  |
| Phosphor                | mg/kg TS   | 39       | 0                                                                                            | 360    | 1500   | 1603   | 2400    | 2700  |
| Schwefel                | mg/kg TS   | 39       | 0                                                                                            | 790    | 3500   | 3589   | 4740    | 5400  |
| Metalle aus der Gesan   |            |          |                                                                                              |        |        |        |         |       |
| Arsen                   | mg/kg TS   | 37       | 0                                                                                            | 5,9    | 21     | 20     | 25,4    | 27    |
| Blei                    | mg/kg TS   | 37       | 0                                                                                            | 9      | 45     | 44     | 56      | 64    |
| Cadmium                 | mg/kg TS   | 37       | 0                                                                                            | 0,27   | 1,9    | 1,8    | 2,3     | 3,2   |
| Chrom                   | mg/kg TS   | 37       | 0                                                                                            | 7,9    | 34     | 32     | 39      | 45    |
| Kupfer                  | mg/kg TS   | 37       | 0                                                                                            | 9,1    | 45     | 45     | 64,4    | 69    |
| Nickel                  | mg/kg TS   | 37       | 0                                                                                            | 5,6    | 23     | 22     | 28      | 29    |
| Quecksilber             | mg/kg TS   | 37       | 0                                                                                            | 0,17   | 1      | 1      | 1,5     | 1,7   |
| Zink                    | mg/kg TS   | 37       | 0                                                                                            | 70     | 350    | 336    | 417     | 520   |
| Metalle aus der Fraktie |            |          |                                                                                              |        |        |        |         |       |
| Arsen <20 µm            | mg/kg TS   | 41       | 0                                                                                            | 29     | 37     | 38     | 42      | 49    |
| Blei <20 µm             | mg/kg TS   | 41       | 0                                                                                            | 72     | 90     | 94     | 114     | 124   |
| Cadmium <20 µm          | mg/kg TS   | 41       | 0                                                                                            | 1,8    | 3,5    | 3,7    | 5       | 5,7   |
| Chrom <20 µm            | mg/kg TS   | 41       | 0                                                                                            | 54     | 62     | 65     | 76      | 91    |
| Kupfer <20 µm           | mg/kg TS   | 41       | 0                                                                                            | 66     | 81     | 89     | 134     | 147   |
| Nickel <20 µm           | mg/kg TS   | 41       | 0                                                                                            | 31     | 38     | 39     | 43      | 46    |
| Quecksilber <20 µm      | mg/kg TS   | 41       | 0                                                                                            | 1,3    | 1,8    | 1,9    | 2,2     | 2,9   |
| Zink <20 µm             | mg/kg TS   | 41       | 0                                                                                            | 532    | 695    | 725    | 945     | 1050  |
| Mineralölkohlenwasse    | erstoffe   |          |                                                                                              |        |        |        |         |       |
| Mineralöl               | mg/kg TS   | 39       | 3                                                                                            | <50    | 110    | 129    | 206     | 380   |
| Mineralöl C10-C20       | mg/kg TS   | 39       | 29                                                                                           | <13    | <25    | k.MW   | 32,6    | 61    |
| Mineralöl C21-C40       | mg/kg TS   | 39       | 1                                                                                            | <25    | 91     | 108    | 177,8   | 317   |
| Polycyclische Aromat    | en         |          |                                                                                              |        |        |        |         |       |
| Naphthalin              | mg/kg TS   | 39       | 1                                                                                            | <0,02  | 0,067  | 0,07   | 0,09    | 0,24  |
| Acenaphtylen            | mg/kg TS   | 39       | 36                                                                                           | <0,02  | <0,02  | k.MW   | <0,02   | 0,03  |
| Acenaphthen             | mg/kg TS   | 39       | 35                                                                                           | <0,02  | <0,02  | k.MW   | <0,0206 | 0,13  |
| Fluoren                 | mg/kg TS   | 39       | 3                                                                                            | <0,02  | 0,027  | 0,03   | 0,06    | 0,11  |
| Phenanthren             | mg/kg TS   | 39       | 0                                                                                            | 0,023  | 0,15   | 0,17   | 0,26    | 0,72  |
| Anthracen               | mg/kg TS   | 39       | 1                                                                                            | <0,02  | 0,046  | 0,06   | 0,11    | 0,24  |
| <u>Fluoranthen</u>      | mg/kg TS   | 39       | 0                                                                                            | 0,055  | 0,27   | 0,32   | 0,47    | 1,1   |
| Pyren                   | mg/kg TS   | 39       | 0                                                                                            | 0,041  | 0,23   | 0,26   | 0,38    | 0,89  |
| Benz(a)anthracen        | mg/kg TS   | 39       | 1                                                                                            | <0,02  | 0,12   | 0,15   | 0,22    | 0,49  |

|                          |              | Annahi | D.C                                                                                    | Min    | Madian | Missal | 00 D  | May  |
|--------------------------|--------------|--------|----------------------------------------------------------------------------------------|--------|--------|--------|-------|------|
| Parameter                | Einheit      | Anzahl | n <bg< th=""><th>Min</th><th>Median</th><th>Mittel</th><th>90.P</th><th>Max</th></bg<> | Min    | Median | Mittel | 90.P  | Max  |
| Chrysen                  | mg/kg TS     | 39     | 1                                                                                      | <0,02  | 0,12   | 0,14   | 0,22  | 0,43 |
| Benzo(b)fluoranthen      | mg/kg TS     | 39     | 0                                                                                      | 0,021  | 0,12   | 0,14   | 0,22  | 0,43 |
| Benzo(k)fluoranthen      | mg/kg TS     | 39     | 1                                                                                      | <0,021 | 0,15   | 0,18   | 0,27  | 0,3  |
| ` '                      |              | 39     | 1                                                                                      | <0,02  |        | 0,08   |       |      |
| Benzo(a)pyren            | mg/kg TS     |        |                                                                                        |        | 0,11   |        | 0,19  | 0,47 |
| Dibenz(ah)anthracen      | mg/kg TS     | 39     | 1                                                                                      | <0,02  | 0,032  | 0,04   | 0,07  | 0,11 |
| Benzo(ghi)perylen        | mg/kg TS     | 39     | 1                                                                                      | <0,02  | 0,12   | 0,15   | 0,26  | 0,43 |
| Indeno(1.2.3-cd)pyren    | mg/kg TS     | 39     | 1                                                                                      | <0,02  | 0,13   | 0,16   | 0,26  | 0,45 |
| PAK Summe 6 g.BG         | mg/kg TS     | 39     | 0                                                                                      | 0,156  | 0,86   | 1,02   | 1,57  | 3,07 |
| PAK Summe 16 g.BG        | mg/kg TS     | 39     | 0                                                                                      | 0,38   | 1,703  | 1,99   | 2,93  | 6,44 |
| Polychlorierte Biphen    | -            | 00     | 4                                                                                      | 0.5    |        |        | 4.0   | 0.5  |
| PCB 28                   | μg/kg TS     | 39     | 1                                                                                      | <0,5   | 1      | 1,1    | 1,6   | 2,5  |
| PCB 52                   | μg/kg TS     | 39     | 2                                                                                      | •      | 0,82   | 1,1    | 2,4   | 3,9  |
| PCB 101                  | μg/kg TS     | 39     | 0                                                                                      | 0,73   | 1,9    | 2,1    | 3,1   | 6,4  |
| PCB 118                  | μg/kg TS     | 39     | 1                                                                                      | <0,5   | 0,97   | 1,2    | 1,7   | 3,8  |
| PCB 138                  | μg/kg TS     | 39     | 0                                                                                      | 1,2    | 3      | 3,6    | 5,7   | 12   |
| PCB 153                  | μg/kg TS     | 39     | 0                                                                                      | 2,4    | 3,9    | 4,7    | 7,4   | 16   |
| PCB 180                  | μg/kg TS     | 39     | 0                                                                                      | 1,5    | 2,4    | 3      | 4,7   | 10   |
| PCB Summe 6 g.BG         | μg/kg TS     | 39     | 0                                                                                      | 7,43   | 12,83  | 15,7   | 25,3  | 48,8 |
| PCB Summe 7 g.BG         | μg/kg TS     | 39     | 0                                                                                      | 7,93   | 13,73  | 16,9   | 27    | 52,6 |
| Hexachlorcyclohexan      |              |        |                                                                                        |        |        |        |       |      |
| alpha-HCH                | μg/kg TS     | 39     | 1                                                                                      | <0,1   | 0,53   | 0,5    | 0,6   | 0,77 |
| beta-HCH                 | μg/kg TS     | 39     | 0                                                                                      | 0,19   | 1,3    | 1,3    | 1,7   | 3,2  |
| gamma-HCH                | μg/kg TS     | 39     | 2                                                                                      | <0,1   | 0,2    | 0,2    | 0,3   | 0,3  |
| delta-HCH                | μg/kg TS     | 39     | 1                                                                                      | <0,1   | 0,46   | 0,5    | 0,6   | 0,7  |
| epsilon-HCH              | μg/kg TS     | 39     | 15                                                                                     | <0,1   | 0,11   | 0,1    | 0,2   | 0,2  |
| DDT + Metabolite         |              |        |                                                                                        |        |        |        |       |      |
| o,p'-DDE                 | μg/kg TS     | 39     | 31                                                                                     | <0,5   | <0,5   | k.MW   | 0,7   | 0,92 |
| p,p'-DDE                 | μg/kg TS     | 39     | 1                                                                                      | <0,5   | 4,5    | 4,7    | 7,9   | 9,6  |
| o,p'-DDD                 | μg/kg TS     | 39     | 1                                                                                      | <0,5   | 4,5    | 4,4    | 6,3   | 7,5  |
| p,p'-DDD                 | μg/kg TS     | 39     | 0                                                                                      | 1,2    | 12     | 11,2   | 16    | 18   |
| o,p'-DDT                 | μg/kg TS     | 39     | 12                                                                                     | <0,5   | 0,61   | 0,7    | 1     | 1,9  |
| p,p'-DDT                 | μg/kg TS     | 39     | 1                                                                                      | <0,5   | 3,4    | 4,3    | 7,2   | 22   |
| Chlorbenzole             |              |        |                                                                                        |        |        |        |       |      |
| Pentachlorbenzol         | μg/kg TS     | 39     | 2                                                                                      | <0,5   | 1,4    | 1,3    | 1,7   | 2,1  |
| Hexachlorbenzol          | μg/kg TS     | 39     | 0                                                                                      | 0,58   | 6,1    | 6,7    | 8,6   | 27   |
| Organozinnverbindun      |              |        |                                                                                        |        |        |        |       |      |
| Monobutylzinn            | μg OZK/kg TS | 43     | 0                                                                                      | 11     | 54     | 56,8   | 88,4  | 178  |
| Dibutylzinn              | μg OZK/kg TS | 43     | 0                                                                                      | 5,4    | 25     | 28,3   | 45,8  | 93   |
| Tributylzinn             | μg OZK/kg TS | 43     | 0                                                                                      | 31     | 123    | 168,2  | 347,4 | 505  |
| Tetrabutylzinn           | μg OZK/kg TS | 43     | 0                                                                                      | 3,4    | 20     | 22,5   | 39,6  | 60   |
| Monooctylzinn            | μg OZK/kg TS | 42     | 3                                                                                      | <1     | 4,4    | 4,4    | 6,7   | 9    |
| Dioctylzinn              | μg OZK/kg TS | 42     | 5                                                                                      | <1     | 3,8    | 4,1    | 6,7   | 12   |
| Triphenylzinn            | μg OZK/kg TS | 43     | 41                                                                                     | <1     | <1     | k.MW   | <1    | 65   |
| Tricyclohexylzinn        | μg OZK/kg TS | 43     |                                                                                        | <1     | <1     | k.MW   | <1    | <1   |
| . Aloy old floxy iz fill | rs 02.00g 10 | 70     | 70                                                                                     | ٠.     | 7.     |        | 7.    | 7.   |
| Summe PCDD/PCDF (I       | I-TEQ)       | 5      | 0                                                                                      | 20     | 27     | 27     | 33    | 34   |
| Sauerstoffzehrung        |              |        |                                                                                        |        |        |        |       |      |
| 02-zehrung n. 180 min    | g O2/kg TS   | 36     | 0                                                                                      | 0,15   | 1,1    | 1,1    | 1,6   | 1,84 |

# Anlage 5

# Biotestuntersuchungen an Sedimentkernen

Zusammenstellung der durchgeführten Biotestuntersuchungen an Sedimentkernen aus der Elbe und dem Hamburger Hafen in 2010 für die Umlagerung von Baggergut vor Neßsand. (Leuchtbakterientest mit *Vibrio fischeri*; Algentest mit *Desmodesmus subspicata*; Daphnientest mit *Daphnia magna*).

| Eluat<br>(n. BfG 1:3) | Leucht-<br>bakterientest | Algentest | Daphnientest |
|-----------------------|--------------------------|-----------|--------------|
| pT-Stufe              | N=35                     | N=35      | N=25         |
| pT 0                  | 30                       | 6         | 9            |
| pT 1                  | 1                        | 15        | 14           |
| pT 2                  | 2                        | 10        | 2            |
| pT 3                  | 0                        | 2         | 0            |
| pT 4                  | 2                        | 1         | 0            |
| pT 5                  | 0                        | 1         | 0            |
| pT 6                  | 0                        | 0         | 0            |
|                       |                          |           |              |

| Toxizitätsklasse |      |  |  |  |  |  |
|------------------|------|--|--|--|--|--|
| Klasse Anzahl    |      |  |  |  |  |  |
|                  | N=35 |  |  |  |  |  |
| 0                | 1    |  |  |  |  |  |
| I                | 5    |  |  |  |  |  |
| II               | 23   |  |  |  |  |  |
| III              | 3    |  |  |  |  |  |
| IV               | 2    |  |  |  |  |  |
| V                | 1    |  |  |  |  |  |
| VI               | 0    |  |  |  |  |  |

| Porenwasser pT-Stufe | N=35 | N=35 | N=25 |
|----------------------|------|------|------|
| pT 0                 | 32   | 4    | 3    |
| pT 1                 | 1    | 13   | 15   |
| pT 2                 | 2    | 17   | 7    |
| pT 3                 | 0    | 1    | 0    |
| pT 4                 | 0    | 0    | 0    |
| pT 5                 | 0    | 0    | 0    |
| pT 6                 | 0    | 0    | 0    |

# Biotestuntersuchungen an Oberflächensedimenten 2010

Zusammenstellung der durchgeführten Biotestuntersuchungen an Oberflächensedimenten aus der Elbe und dem Hamburger Hafen in 2010 (Testumfang wie oben, nur Eluatuntersuchungen).

| Eluat<br>(n. BfG 1:3)<br>pT-Stufe | Leucht-<br>bakterientest<br>N=14 | Algentest<br>N=14 | Daphnientest<br>N=14 |
|-----------------------------------|----------------------------------|-------------------|----------------------|
|                                   | 14=14                            | 11-14             | 14=14                |
| pT 0                              | 8                                | 2                 | 7                    |
| pT 1                              | 0                                | 4                 | 7                    |
| pT 2                              | 3                                | 8                 | 0                    |
| pT 3                              | 3                                | 0                 | 0                    |
| pT 4                              | 0                                | 0                 | 0                    |
| pT 5                              | 0                                | 0                 | 0                    |
| pT 6                              | 0                                | 0                 | 0                    |

Anlage 6 Schadstoffbelastung des in der METHA und Entwässerungsfeldern klassierten Schlicks 2010

|                              |              | Anzahl | n <bg< th=""><th>Min</th><th>Median</th><th>Mittel</th><th>90.P</th><th>Max</th></bg<> | Min                                     | Median | Mittel | 90.P   | Max   |
|------------------------------|--------------|--------|----------------------------------------------------------------------------------------|-----------------------------------------|--------|--------|--------|-------|
| Originalsubstanz             |              |        |                                                                                        |                                         |        |        |        |       |
| Trockensubstanz              | Gew%         | 34     | 0                                                                                      | 19,4                                    | 24,1   | 31,4   | 58,8   | 69,6  |
| Fraktion < 20 µm             | Gew%         | 34     | 0                                                                                      | 26,7                                    | 44,6   | 44,2   | 55,7   | 60,3  |
| Fraktion 20 - 63 µm          | Gew%         | 34     | 0                                                                                      | 18,3                                    | 29,3   | 28,8   | 33,5   | 38,7  |
| Fraktion 63 - 100 µm         | Gew%         | 34     | 0                                                                                      | 3                                       | 15,5   | 15,1   | 22,3   | 29,4  |
| Fraktion 100 - 200 µm        | Gew%         | 34     | 0                                                                                      | 4,3                                     | 8,1    | 8,1    | 10,6   | 14,6  |
| Fraktion 200 - 630 µm        | Gew%         | 34     | 0                                                                                      | 0,5                                     | 1,5    | 3      | 9      | 17,6  |
| Fraktion 630 - 1000 µm       | Gew%         | 34     | 1                                                                                      | <0,1                                    | 0,2    | 0,4    | 0,8    | 2,3   |
| Fraktion > 1000 µm           | Gew%         | 34     | 5                                                                                      | <0,1                                    | 0,2    | 0,5    | 1,7    | 3,7   |
| Glühverlust                  | Gew% TS      | 34     | 0                                                                                      | 6                                       | 8,6    | 8,7    | 10,3   | 12,6  |
| TOC (C)                      | Gew% TS      | 34     | 0                                                                                      | 2,4                                     | 3,5    | 3,7    | 4,6    | 7,2   |
| Calciumcarbonat nach         | "            |        |                                                                                        | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | -04-0  |        | 00.100 |       |
| Scheibler                    | mg/kg TS     | 34     | 0                                                                                      | 14400                                   | 76450  | 76500  | 90460  | 93200 |
| pH-Wert am Feststoff         | -            | 2      | 0                                                                                      | 7,2                                     | 7,3    | 7,3    | 7,4    | 7,4   |
| Cyanid ges.                  | mg/kg TS     | 34     | 6                                                                                      | <0,5                                    | 0,6    | 1      | 2      | 3,5   |
| EOX                          | mg/kg TS     | 34     | 4                                                                                      | <0,5                                    | 1,5    | 1,6    | 2,4    | 3,7   |
| Nährstoffe                   | /I <b>TO</b> | •      | •                                                                                      | 045                                     | 4000   | 4000   | 4044   | 4000  |
| Ammonium                     | mg/kg TS     | 2      | 0                                                                                      | 915                                     | 1098   | 1098   | 1244   | 1280  |
| Stickstoff ges.              | mg/kg TS     | 2      | 0                                                                                      | 3610                                    | 3720   | 3720   | 3808   | 3830  |
| gesamt-Phosphor (als P)      | mg/kg TS     | 2      | 0                                                                                      | 2100                                    | 2150   | 2150   | 2190   | 2200  |
| Gesamt-Schwefel (S)          | mg/kg TS     | 2      | 0                                                                                      | 4100                                    | 4250   | 4250   | 4370   | 4400  |
| Arsen                        | mg/kg TS     | 34     | 0                                                                                      | 17                                      | 34     | 36     | 46     | 92    |
| Blei                         | mg/kg TS     | 34     | 0                                                                                      | 38                                      | 83     | 89     | 114    | 209   |
| Cadmium                      | mg/kg TS     | 34     | 0                                                                                      | 1,4                                     | 3,6    | 3,8    | 4,9    | 9,8   |
| Chrom ges.                   | mg/kg TS     | 34     | 0                                                                                      | 36                                      | 65     | 64     | 77     | 122   |
| Kupfer                       | mg/kg TS     | 34     | 0                                                                                      | 46                                      | 125    | 124    | 160    | 217   |
| Nickel                       | mg/kg TS     | 34     | 0                                                                                      | 20                                      | 32     | 31     | 35     | 43    |
| Quecksilber                  | mg/kg TS     | 34     | 0                                                                                      | 0,9                                     | 2,9    | 2,8    | 3,8    | 6,6   |
| Zink                         | mg/kg TS     | 34     | 0                                                                                      | 310                                     | 612    | 632    | 788    | 1290  |
| Thallium                     | mg/kg TS     | 34     | 0                                                                                      | 0,2                                     | 0,4    | 0,5    | 0,6    | 1,2   |
| Fluor                        | mg/kg TS     | 2      | 0                                                                                      | 78                                      | 169    | 169    | 242    | 260   |
| Chlor                        | mg/kg TS     | 2      | 0                                                                                      | 280                                     | 340    | 340    | 388    | 400   |
| Calcium                      | mg/kg TS     | 2      | 0                                                                                      | 31000                                   | 31500  | 31500  | 31900  | 32000 |
| Eisen ges.                   | mg/kg TS     | 2      | 0                                                                                      | 25000                                   | 25000  | 25000  | 25000  | 25000 |
| Magnesium                    | mg/kg TS     | 2      | 0                                                                                      | 4800                                    | 4900   | 4900   | 4980   | 5000  |
| Mangan                       | mg/kg TS     | 2      | 0                                                                                      | 1600                                    | 1600   | 1600   | 1600   | 1600  |
| Kohlenwasserstoffe           |              |        |                                                                                        |                                         |        |        |        |       |
| Lipophile Stoffe             | mg/kg OS     | 34     | 0                                                                                      | 39                                      | 174    | 192    | 322    | 380   |
| Kohlenwasserstoffe (C10-C40) | mg/kg TS     | 34     | 0                                                                                      | 160                                     | 365    | 416    | 670    | 1100  |
| Kohlenwasserstoffe           | "            |        |                                                                                        |                                         | 400    |        | 4=0    | 0.4 = |
| (C10-C22)                    | mg/kg TS     | 34     | 0                                                                                      | 34                                      | 100    | 111    | 179    | 315   |
| Summe BTEX                   | mg/kg TS     | 34     | 0                                                                                      | <0,25                                   | <0,25  | <0,25  | <0,25  | 0,28  |
| Polycyclische aromatisc      |              |        | _                                                                                      |                                         | 2      |        | a :-   |       |
| Naphthalin                   | mg/kg TS     | 34     | 2                                                                                      | <0,05                                   | 0,24   | 0,27   | 0,43   | 0,89  |
| Acenaphthen                  | mg/kg TS     | 34     | 11                                                                                     | <0,05                                   | 0,07   | 0,08   | 0,11   | 0,17  |
| Acenaphthylen                | mg/kg TS     | 34     | 23                                                                                     | <0,05                                   | <0,05  | k. MW  | 0,07   | 0,12  |
| Fluoren                      | mg/kg TS     | 34     | 4                                                                                      | <0,05                                   | 0,15   | 0,16   | 0,27   | 0,42  |
| Anthracen                    | mg/kg TS     | 34     | 4                                                                                      | <0,05                                   | 0,21   | 0,24   | 0,42   | 0,61  |

| Originalsubstanz                             |                      | Anzahl | n <bg< th=""><th>Min</th><th>Median</th><th>Mittel</th><th>90.P</th><th>Max</th></bg<> | Min   | Median | Mittel    | 90.P | Max   |
|----------------------------------------------|----------------------|--------|----------------------------------------------------------------------------------------|-------|--------|-----------|------|-------|
| Phenanthren                                  | mg/kg TS             | 34     | 0                                                                                      | 0,06  | 0,61   | 0,64      | 1,07 | 1,6   |
| Fluoranthen                                  | mg/kg TS             | 34     | 0                                                                                      | 0,09  | 1      | 0,99      | 1,07 | 2,2   |
| Pyren                                        | mg/kg TS             | 34     | 0                                                                                      | 0,03  | 0,79   | 0,81      | 1,27 | 1,9   |
| Benz(a)anthracen                             | mg/kg TS             | 34     | 2                                                                                      | <0,07 | 0,73   | 0,47      | 0,62 | 0,96  |
| Chrysen                                      | mg/kg TS             | 34     | 2                                                                                      | <0,05 | 0,46   | 0,46      | 0,6  | 1,2   |
| Benzo(b)fluoranthen                          | mg/kg TS             | 34     | 2                                                                                      | <0,05 | 0,40   | 0,40      | 0,63 | 0,76  |
| Benzo(k)fluoranthen                          | mg/kg TS             | 34     | 3                                                                                      | <0,05 | 0,32   | 0,47      | 0,03 | 0,76  |
| Benzo(a)pyren                                | mg/kg TS             | 34     | 2                                                                                      | <0,05 | 0,22   | 0,22      | 0,54 | 0,4   |
| Indeno(1,2,3-cd)pyren                        | mg/kg TS             | 34     | 3                                                                                      | <0,05 | 0,41   | 0,39      | 0,54 | 0,74  |
| , ,,,,                                       |                      | 34     | 3                                                                                      | <0,05 | 0,38   | 0,36      |      |       |
| Benzo(ghi)perylen                            | mg/kg TS             | 34     | 5<br>6                                                                                 | <0,05 | •      | •         | 0,5  | 0,65  |
| Dibenz(ah)anthracen                          | mg/kg TS             |        |                                                                                        |       | 0,09   | 0,1       | 0,15 | 0,2   |
| Summe PAK (16)                               | mg/kg TS             | 34     | 0                                                                                      | 0,88  | 6,08   | 6,04      | 8,65 | 11,96 |
| Chlorierte Kohlenwasse<br>PCCC/F Dioxine und | rstoffe              |        |                                                                                        |       |        |           |      |       |
| Furane I-TEQ (NATO)                          | ng/kg TS             | 12     | 0                                                                                      | 21    | 65     | 144       | 345  | 565   |
| alpha-HCH                                    | μg/kg TS             | 12     | 9                                                                                      | <10   | <10    | k. MW     | 16   | 22    |
| beta-HCH                                     | μg/kg TS             | 12     | 10                                                                                     | <10   | <10    | k. MW     | 9    | 16    |
| gamma-HCH                                    | μg/kg TS             | 12     | 12                                                                                     | <10   | <10    | k. MW     | <10  | <10   |
| delta-HCH                                    | μg/kg TS             | 12     | 10                                                                                     | <10   | <10    | k. MW     | 13   | 25    |
| epsilon-HCH                                  | μg/kg TS             | 12     | 12                                                                                     | <10   | <10    | k. MW     | <10  | <10   |
| Summe LCKW                                   | μg/kg TS             |        |                                                                                        | 110   | 110    | 14. 14144 | 110  | 110   |
| Aldrin                                       | μg/kg TS             | 12     | 12                                                                                     | <20   | <10    | k. MW     | <10  | <10   |
| o.p-DDE                                      | μg/kg TS             | 12     | 12                                                                                     | <10   | <10    | k. MW     | <10  | <10   |
| p.p-DDE                                      | μg/kg TS             | 12     | 7                                                                                      | <10   | <10    | k. MW     | 21   | 28    |
| o,p-DDD                                      | μg/kg TS<br>μg/kg TS | 12     | 7                                                                                      | <10   | <10    | k. MW     | 20   | 29    |
| p.p-DDD                                      | μg/kg TS<br>μg/kg TS | 12     | 4                                                                                      | <10   | 26     | 33        | 66   | 97    |
| o.p-DDT                                      | μg/kg TS<br>μg/kg TS | 12     | 12                                                                                     | <10   | <10    | k. MW     | <10  | <10   |
| p.p-DDT                                      | μg/kg TS<br>μg/kg TS | 12     | 10                                                                                     | <10   | <10    | k. MW     | 18   | 38    |
| Dieldrin                                     | μg/kg TS<br>μg/kg TS | 12     | 12                                                                                     | <20   | <10    | k. MW     | <10  | <10   |
| Endrin                                       | μg/kg TS<br>μg/kg TS | 12     | 12                                                                                     | <20   | <10    | k. MW     | <10  | <10   |
|                                              |                      | 12     | 12                                                                                     | <20   |        | k. MW     |      |       |
| Methoxychlor                                 | μg/kg TS             |        |                                                                                        |       | <10    |           | <10  | <10   |
| PCB-Nr. 28                                   | μg/kg TS             | 14     | <3<br><3                                                                               | 3,6   | 4      | 5         | 7,1  | 14    |
| PCB-Nr. 52                                   | μg/kg TS             | 5      | <3                                                                                     | 5,5   | 5,6    | 8,4       | 11   | 5     |
| PCB-Nr. 101                                  | μg/kg TS             | 5      | <3                                                                                     | 7,8   | 8,7    | 13        | 22   | 5     |
| PCB-Nr. 118                                  | μg/kg TS             | 5      | <3                                                                                     | 4,8   | 5,1    | 8,3       | 11   | 5     |
| PCB-Nr. 138                                  | μg/kg TS             | 4      | <3                                                                                     | 11    | 11,5   | 18,5      | 26   | 4     |
| PCB-Nr. 153                                  | μg/kg TS             | 4      | <3                                                                                     | 14,5  | 15,5   | 24,1      | 37   | 4     |
| PCB-Nr. 180                                  | μg/kg TS             | 4      |                                                                                        | 9,6   | 9,8    | 16,7      | 22   | 4     |
| Summe PCB 6                                  | μg/kg TS             | 34     | 0                                                                                      | 0,01  | 0,03   | 0,03      | 0,05 | 0,07  |
| Organozinnverbindunge                        |                      |        |                                                                                        | _     |        |           |      |       |
| Mono-Butylzinn (Kation)                      | μg/kg TS             | 34     | 0                                                                                      | 5     | 91     | 96        | 157  | 270   |
| Di-Butylzinn (Kation)                        | μg/kg TS             | 34     | 0                                                                                      | 5     | 115    | 116       | 167  | 210   |
| Tri-Butylzinn (Kation)                       | μg/kg TS             | 34     | 0                                                                                      | 9     | 595    | 564       | 833  | 1300  |
| Tetra-Butylzinn (Kation)                     | μg/kg TS             | 34     | 0                                                                                      | 10    | 155    | 157       | 237  | 320   |
| Mono-Octylzinn (Kat.)                        | μg/kg TS             | 34     | 1                                                                                      | <1    | 7      | 7         | 10   | 14    |
| Di-Octylzinn (Kation)                        | μg/kg TS             | 34     | 1                                                                                      | <1    | 8      | 8         | 13   | 15    |
| Tri-Phenylzinn (Kation)                      | μg/kg TS             | 34     | 34                                                                                     | <1    | <1     |           | <1   | <1    |
| Tri-Cyclohexylzinn (Kat.)                    | μg/kg TS             | 34     | 11                                                                                     | <3    | 3      | 3         | 10   | 12    |
| Monobutylzinn als Zinn                       | μg Sn/kg TS          |        |                                                                                        |       |        |           |      |       |
| Dibutylzinn als Zinn                         | μg Sn/kg TS          |        |                                                                                        |       |        |           |      |       |
| Tributylzinn als Zinn                        | μg Sn/kg TS          | 34     | 0                                                                                      | 0,004 | 0,24   | 0,23      | 0,34 | 0,53  |
| Tetrabutylzinn als Zinn                      | μg Sn/kg TS          |        |                                                                                        |       |        |           |      |       |

|                            |       | Anzahl | n <bg< th=""><th>Min</th><th>Median</th><th>Mittel</th><th>90.P</th><th>Max</th></bg<> | Min     | Median  | Mittel | 90.P    | Max    |
|----------------------------|-------|--------|----------------------------------------------------------------------------------------|---------|---------|--------|---------|--------|
| Originalsubstanz           |       |        |                                                                                        |         |         |        |         |        |
|                            |       |        |                                                                                        |         |         |        |         |        |
| Eluat (DIN S4)             |       |        |                                                                                        |         |         |        |         |        |
| pH-Wert                    | _     | 34     | 0                                                                                      | 7       | 7,2     | 7,3    | 7,5     | 8,1    |
| Leitfähigkeit              | μS/cm | 34     | 0                                                                                      | 508     | 814     | 804    | 925     | 1030   |
| Abdampfrückstand           | mg/l  | 34     | 0                                                                                      | 342     | 440     | 481    | 610     | 931    |
| DOC                        | mg/l  | 34     | 0                                                                                      | 3,4     | 14      | 14,9   | 21      | 32     |
| Ammoniumstickstoff         | mg/l  | 34     | 3                                                                                      | <0,02   | 21      | 17,8   | 29,7    | 37     |
| Kohlenwasserstoffe H53     | mg/l  | 2      | 0                                                                                      | 1       | 1,2     | 1,2    | 1,3     | 1,3    |
| Fluorid                    | mg/l  | 34     | 2                                                                                      | <0,15   | 0,38    | 0,36   | 0,5     | 0,58   |
| Chlorid                    | mg/l  | 34     | 0                                                                                      | 3,4     | 30,5    | 27,9   | 39      | 44     |
| Sulfat                     | mg/l  | 34     | 0                                                                                      | 79      | 187     | 197    | 257     | 444    |
| Cyanid                     | mg/l  | 34     | 32                                                                                     | <0,005  | <0,005  | k. MW  | <0,005  | 0,019  |
| Cyanid, leicht freisetzbar | mg/l  | 34     | 34                                                                                     | <0,005  | <0,005  | k. MW  | <0,005  | <0,005 |
| Phenol-Index               | mg/l  | 34     | 32                                                                                     | <0,005  | <0,005  | k. MW  | <0,010  | <0,010 |
| AOX                        | mg/l  | 34     | 15                                                                                     | <0,010  | 0,016   | 0,017  | 0,029   | 0,044  |
| Arsen                      | mg/l  | 34     | 0                                                                                      | 0,0028  | 0,037   | 0,039  | 0,082   | 0,130  |
| Blei                       | mg/l  | 34     | 32                                                                                     | <0,001  | <0,001  | k. MW  | <0,001  | 0,001  |
| Cadmium                    | mg/l  | 34     | 32                                                                                     | <0,0003 | <0,0003 | k. MW  | <0,0003 | 0,0009 |
| Chrom                      | mg/l  | 34     | 26                                                                                     | <0,001  | <0,001  | k. MW  | 0,001   | 0,002  |
| Kupfer                     | mg/l  | 34     | 21                                                                                     | <0,001  | <0,001  | k. MW  | 0,006   | 0,015  |
| Nickel                     | mg/l  | 34     | 0                                                                                      | 0,0024  | 0,008   | 0,008  | 0,010   | 0,012  |
| Quecksilber                | mg/l  | 34     | 30                                                                                     | <0,0002 | <0,0002 | k. MW  | 0,0001  | 0,0004 |
| Zink                       | mg/l  | 34     | 22                                                                                     | <0,01   | <0,01   | k. MW  | 0,02    | 0,18   |
| Chrom-VI                   | mg/l  | 34     | 34                                                                                     | <0,025  | <0,005  | k. MW  | <0,005  | <0,005 |
| Thallium                   | mg/l  | 1      | 1                                                                                      | <0,001  | <0,001  | k. MW  | <0,001  | <0,001 |
| Molybdän (Mo)              | mg/l  | 34     | 0                                                                                      | 0,002   | 0,018   | 0,016  | 0,023   | 0,043  |
| Selen (Se)                 | mg/l  | 34     | 34                                                                                     | <0,002  | <0,002  | k. MW  | <0,002  | <0,002 |
| Antimon (Sb)               | mg/l  | 34     | 19                                                                                     | <0,001  | <0,001  | k. MW  | 0,003   | 0,006  |
| Barium (Ba)                | mg/l  | 34     | 0                                                                                      | 0,024   | 0,063   | 0,065  | 0,090   | 0,120  |
|                            |       |        |                                                                                        |         |         |        |         |        |
|                            |       |        |                                                                                        |         |         |        |         |        |